小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题22计数原理与二项式定理1、(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【详解】(1)当从8门课中选修2门,则不同的选课方案共有种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有种;②若体育类选修课2门,则不同的选课方案共有种;综上所述:不同的选课方案共有种.故答案为:64.2、(2023年新课标全国Ⅱ卷)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A.种B.种C.种D.种【答案】D【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,根据组合公式和分步计数原理则不同的抽样结果共有种.故选:D.3、(2023年全国乙卷数学(理))3.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】C【详解】首先确定相同得读物,共有种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有种,根据分步乘法公式则共有种,故选:C.4、(2023年全国甲卷数学(理))有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为()A.120B.60C.40D.30【答案】B【详解】不妨记五名志愿者为,假设连续参加了两天社区服务,再从剩余的4人抽取2人各参加星期六与星期天的社区服务,共有种方法,同理:连续参加了两天社区服务,也各有种方法,所以恰有1人连续参加了两天社区服务的选择种数有种.故选:B.5、(2023年新高考天津卷)在的展开式中,项的系数为_________.【答案】【详解】展开式的通项公式,令可得,,则项的系数为.故答案为:60.6、【2022年新高考2卷】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.12种B.24种C.36种D.48种【答案】B【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!×2×2=24种不同的排列方式,故选:B7、【2021年乙卷理科】将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.8、(2021年全国高考乙卷数学(理)试题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有小学、初中、高中各种试卷真题知识归纳文案合同PP...