2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(解析版).docx本文件免费下载 【共31页】

2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题17函数求参问题真题呈现一、单选题1.设函数在区间上单调递减,则的取值范围是()A.B.C.D.【解析】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D2.函数存在3个零点,则的取值范围是()A.B.C.D.【解析】,则,若要存在3个零点,则要存在极大值和极小值,则,令,解得或,且当时,,当,,故的极大值为,极小值为,若要存在3个零点,则,即,解得,故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.已知是偶函数,则()A.B.C.1D.2【解析】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.4.若为偶函数,则().A.B.0C.D.1【解析】因为为偶函数,则,解得,当时,,,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.5.若,则()A.B.C.1D.【解析】,,.故选:C.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.设,函数,若在区间内恰有6个零点,则a的取值范围是()A.B.C.D.【解析】最多有2个根,所以至少有4个根,由可得,由可得,(1)时,当时,有4个零点,即;当,有5个零点,即;当,有6个零点,即;(2)当时,,,当时,,无零点;当时,,有1个零点;当时,令,则,此时有2个零点;所以若时,有1个零点.综上,要使在区间内恰有6个零点,则应满足或或,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则可解得a的取值范围是.二、填空题7.已知函数在区间有且仅有3个零点,则的取值范围是________.【解析】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,8.若为偶函数,则________.【解析】因为为偶函数,定义域为,所以,即,则,故,此时,所以,又定义域为,故为偶函数,所以.9.若函数有且仅有两个零点,则的取值范围为_________.【解析】(1)当时,,即,若时,,此时成立;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若时,或,若方程有一根为,则,即且;若方程有一根为,则,解得:且;若时,,此时成立.(2)当时,,即,若时,,显然不成立;若时,或,若方程有一根为,则,即;若方程有一根为,则,解得:;若时,,显然不成立;综上,当时,零点为,;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,零点为.所以,当函数有两个零点时,且.故答案为:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com10.设,若函数在上单调递增,则a的取值范围是______.【解析】由函数的解析式可得在区间上恒成立,则,即在区间上恒成立,故,而,故,故即,故,结合题意可得实数的取值范围是.11.设,对任意实数x,记.若至少有3个零点,则实数的取值范围为______.【解析】设,,由可得.要使得函数至少有个零点,则函数至少有一个零点,则,解得或.①当时,,作出函数、的图象如下图所示:此时函数只有两个零点,不合乎题意;②当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,所以,,解得;③当时,,作出函数、的图象如下图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由图可知,函数的零点个数为,合乎题意;④当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,可得,解得,此时.综上所述,实数的取值范围是.12.已知,函数若,则___________.【解析】,故,13.已知函数是偶函数,则______.【解析】因为,故,因为为偶函数,故,时,整理得到,故,三、双空题14.已知函数则________;若当时,,则的最大值是_________.【解析】由已知,,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,由可得,所以,当时,由可得,所以,等价于,所以,所以的最大值为.故答案为:,.15.若是奇函数,则____...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1991年高考数学真题(文科)(安徽自主命题).doc
1991年高考数学真题(文科)(安徽自主命题).doc
免费
28下载
2005年贵州高考理科数学真题及答案.doc
2005年贵州高考理科数学真题及答案.doc
免费
9下载
精品解析:2022年北京市高考数学试题(解析版).docx
精品解析:2022年北京市高考数学试题(解析版).docx
免费
12下载
2009年高考真题数学【理】(山东卷)(原卷版).doc
2009年高考真题数学【理】(山东卷)(原卷版).doc
免费
2下载
2017年江苏省高考数学试卷往年高考真题.doc
2017年江苏省高考数学试卷往年高考真题.doc
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(空白卷) (7).pdf
2023年高考数学试卷(文)(全国乙卷)(空白卷) (7).pdf
免费
0下载
2008年高考数学试卷(文)(全国卷Ⅱ)(解析卷) (6).pdf
2008年高考数学试卷(文)(全国卷Ⅱ)(解析卷) (6).pdf
免费
0下载
精品解析:2024届江苏省南通市徐州市高三2月大联考模拟预测数学试题(解析版).docx
精品解析:2024届江苏省南通市徐州市高三2月大联考模拟预测数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料专题03 函数的奇偶性、周期性、对称性(原卷版).docx
2024年新高考数学复习资料专题03 函数的奇偶性、周期性、对称性(原卷版).docx
免费
0下载
1994年高考数学真题(文科)(陕西自主命题).doc
1994年高考数学真题(文科)(陕西自主命题).doc
免费
9下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(二十七).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(二十七).docx
免费
6下载
高考复习专项练习一轮数学课时规范练51 随机抽样、用样本估计总体.docx
高考复习专项练习一轮数学课时规范练51 随机抽样、用样本估计总体.docx
免费
23下载
精品解析:2022年6月浙江省慈溪市高二学考模拟数学试题(解析版).docx
精品解析:2022年6月浙江省慈溪市高二学考模拟数学试题(解析版).docx
免费
28下载
2009年高考数学试卷(理)(上海)(空白卷).doc
2009年高考数学试卷(理)(上海)(空白卷).doc
免费
0下载
2022届江苏省盐城市阜宁县东沟中学高三下学期第一次综合训练数学试题(原卷版).docx
2022届江苏省盐城市阜宁县东沟中学高三下学期第一次综合训练数学试题(原卷版).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 5.docx
高中2024版《微专题》·数学·新高考专练 5.docx
免费
0下载
高中2022·微专题·小练习·数学·文科【统考版】专练12.docx
高中2022·微专题·小练习·数学·文科【统考版】专练12.docx
免费
0下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2025年新高考数学复习资料重难点突破01 抽象函数模型归纳总结(八大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破01 抽象函数模型归纳总结(八大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料2025高考总复习专项复习--概率专题十三(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--概率专题十三(含解析).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群