2024年新高考数学复习资料通关秘籍04 三角函数之求ω归类(易错点+五大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx本文件免费下载 【共30页】

2024年新高考数学复习资料通关秘籍04 三角函数之求ω归类(易错点+五大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx
2024年新高考数学复习资料通关秘籍04 三角函数之求ω归类(易错点+五大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx
2024年新高考数学复习资料通关秘籍04 三角函数之求ω归类(易错点+五大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com秘籍04三角函数求归类目录【高考预测】概率预测+题型预测+考向预测【应试秘籍】总结常考点及应对的策略【误区点拨】点拨常见的易错点易错点:多个条件同时出现易弄混k的取值【抢分通关】精选名校模拟题,讲解通关策略【题型一】利用单调性、对称轴、对称中心求ω【题型二】极(最)值点“恰有”型求ω【题型三】极(最)值点“没有”型求ω【题型四】极(最)值点“至少、至多”型求ω【题型五】最值与恒成立型求ω概率预测☆☆☆☆☆题型预测选择题、填空题☆☆☆☆☆考向预测求的范围和最值三角函数作为基础题题型之一,在新结构试卷中,原本第一道解答题的位置可能被替代,所以小题的三角函数问题就会突出,常考的齐次化切、范围相关的问题都会是今年的重点题型,范围相关的问题一般有整体法和卡根法两种解法,根据学生掌握情况自主学习,这里用的大多是整体法,需要清晰的分清对于三角函数图象的影响以及题干的条件从而用对应的方法解决。易错点:多个条件同时出现易弄混k的取值易错提醒:涉及到对称轴对称中心以及单调性多个同时出现时,,不要把所有的都写成一个k,因为需要多个式子,而这些式子的不一定一致,即它们本身不一定相等.实际上小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com建议换成不同的字母较合适。例(23-24高一下·辽宁·阶段练习)若函数(,)的最小正周期为,且,若在区间内没有零点,则的取值范围为.【答案】【详解】由题意,所以,结合,得,,注意到,所以的零点关于单调递增,注意到时,,所以我们只需考虑即可,现在让,解得,从而,结合,可知只能,此时,即的取值范围为.故答案为:.变式1:(2024·江苏泰州·模拟预测)设函数在上至少有两个不同零点,则实数的取值范围是()A.B.C.D.【答案】A小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】令得,因为,所以,令,解得或,从小到大将的正根写出如下:,,,,,……,因为,所以,当,即时,,解得,此时无解,当,即时,,解得,此时无解,当,即时,,解得,故,当,即时,,解得,故,当时,,此时在上至少有两个不同零点,综上,的取值范围是.故选:A【题型一】利用单调性、对称轴、对称中心求ω函数的性质:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由求增区间;由求减区间.由求对称轴.由求对称中心.【例1】(多选)(2024·辽宁葫芦岛·一模)已知在区间上单调递增,则的取值可能在()A.B.C.D.【答案】AC【详解】,当,由,则,则有,,解得,,即,,有,,即,即或,当时,有,时,有,故的取值可能在或.故选:AC.【例2】(2024·安徽芜湖·二模)已知偶函数的图像关于点中心对称,且在区间上单调,则.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】/1.5【详解】因为偶函数,所以,,即或,又的图像关于点中心对称,所以,即,所以,因为函数单调,所以,即,所以当时,符合条件.故答案为:【例3】(2024·陕西安康·模拟预测)已知函数在区间上单调递减,且在区间上只有1个零点,则的取值范围是()A.B.C.D.【答案】C【详解】当时,,则,当时,,则,即有,解得.故选:C.【变式1】(2024·陕西榆林·二模)已知函数在上单调,的图象关于点中心对称且关于直线对称,则的取值个数是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.1B.2C.3D.4【答案】B【详解】由题意得的图象关于点中心对称且关于直线对称,故,则,即,由函数在上单调,得,即,即,解得,而,故或1,或2,当时,,则,结合,得,则,此时,当时,,由于在上单调递增,故在上单调递增,满足题意;当时,,则,结合,得,则,此时,当时,,由于在上不单调,故在上不单调,此时不合题意;当时,,则,结合,得,则,此时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,,由于在上单调递增,故在上单调递...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(十八).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(十八).docx
免费
8下载
2019年高考数学试卷(理)(新课标Ⅱ)(解析卷) (10).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(解析卷) (10).pdf
免费
0下载
高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(学生版).docx.doc
高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(学生版).docx.doc
免费
0下载
2013年高考数学试卷(理)(新课标Ⅱ)(空白卷).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(空白卷).pdf
免费
0下载
2020年高考数学真题(文科)(广东自主命题)(解析版).docx
2020年高考数学真题(文科)(广东自主命题)(解析版).docx
免费
17下载
高中数学《合格考资料合集》专题09 概率.pdf
高中数学《合格考资料合集》专题09 概率.pdf
免费
21下载
高中数学高考数学10大专题技巧--专题21  数量积、角度及参数型定值问题(教师版).docx
高中数学高考数学10大专题技巧--专题21 数量积、角度及参数型定值问题(教师版).docx
免费
0下载
2020年高考数学试卷(文)(新课标Ⅰ)(空白卷) (3).pdf
2020年高考数学试卷(文)(新课标Ⅰ)(空白卷) (3).pdf
免费
0下载
2024年新高考数学复习资料第07练 函数的基本性质Ⅰ-单调性与最值(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第07练 函数的基本性质Ⅰ-单调性与最值(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料专题14 立体几何常见压轴小题全归纳(9大核心考点)(讲义)(原卷版).docx
2024年新高考数学复习资料专题14 立体几何常见压轴小题全归纳(9大核心考点)(讲义)(原卷版).docx
免费
0下载
2024版《微专题》·数学(文)·统考版专练 1.docx
2024版《微专题》·数学(文)·统考版专练 1.docx
免费
24下载
2024年新高考数学复习资料第28讲 三角恒等变换(2)(解析版).docx
2024年新高考数学复习资料第28讲 三角恒等变换(2)(解析版).docx
免费
0下载
2023年高考数学试卷(理)(全国甲卷)(空白卷).docx
2023年高考数学试卷(理)(全国甲卷)(空白卷).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (6).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (6).pdf
免费
0下载
高中2023《微专题·小练习》·数学·文科·L-2专练50.docx
高中2023《微专题·小练习》·数学·文科·L-2专练50.docx
免费
0下载
2007年黑龙江高考文科数学真题及答案.doc
2007年黑龙江高考文科数学真题及答案.doc
免费
4下载
2025年新高考数学复习资料高考仿真重难点训练05 三角函数图像变换 求参数问题(原卷版).docx
2025年新高考数学复习资料高考仿真重难点训练05 三角函数图像变换 求参数问题(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (5).docx
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (5).docx
免费
0下载
2019年高考数学试卷(文)(北京)(解析卷).doc
2019年高考数学试卷(文)(北京)(解析卷).doc
免费
0下载
2002年海南高考文科数学真题及答案.doc
2002年海南高考文科数学真题及答案.doc
免费
12下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群