2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共45页】

2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第07讲函数的基本性质Ⅰ-单调性与最值(精讲)题型目录一览①函数单调性的判断与证明②求函数的单调区间③复合函数的单调性④函数单调性的应用⑤函数的最值(值域)1.函数的单调性(1)增函数:若对于定义域I内的某个区间DDI上的任意两个自变量1x、2x,当12xx时,都有12fxfx,那么就说函数fx在区间D上是增函数;(2)减函数:若对于定义域I内的某个区间DDI上的任意两个自变量1x、2x,当12xx时,都有12fxfx,那么就说函数fx在区间D上是减函数.(3)【特别提醒】①单调区间只能用区间表示,不能用不等式或集合表示.②有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.2.函数的最值(1)最大值:一般地,设函数yfx的定义域为I,如果存在实数M满足:①对于任意的xI,都有fxM;②存在0xI,使得0fxM.那么,我们称M是函数yfx的最大值.一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)最小值:一般地,设函数yfx的定义域为I,如果存在实数m满足:①对于任意的xI,都有fxm;②存在0xI,使得0fxm.那么,我们称m是函数yfx的最小值.(3)函数最值存在的两个结论①闭区间上的连续函数一定存在最大值和最小值.②开区间上的“单峰”函数一定存在最大(小)值.【常用结论】1.∀x1,x2∈D(x1≠x2),⇔f(x)在D上是增函数;⇔f(x)在D上是减函数.2.对勾函数y=(a>0)的增区间为(-∞,-]和[,+∞),减区间为[-,0)和(0,].3.当f(x),g(x)都是增(减)函数时,f(x)+g(x)是增(减)函数.4.若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)的单调性相反.5.函数y=f(x)在公共定义域内与y=的单调性相反.6.复合函数y=f[g(x)]的单调性与函数y=f(u)和u=g(x)的单调性关系是“同增异减”.题型一函数单调性的判断与证明策略方法1.定义法证明函数单调性的步骤2.判断函数单调性的四种方法二、题型分类精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)象法;图(2)性法;质(3)法;导数(4)定法.义3.证明函数单调性的两种方法(1)定法;义(2)法.导数【典例1】设函数,指出在上的单调性,并证明你的结论.【答案】在上单调递增,证明见解析【分析】设定义域内,再计算的正负判断即可.【详解】在上单调递增,证明如下:,取,则.因为,则,,得,所以,在上单调递增.【题型训练】一、单选题1.设函数满足:对任意的都有,则与大小关系是()A.B.C.D.【答案】A【分析】根据已知条件确定函数的单调性,进而比较函数值大小即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】因为,当时;当时;所以函数在实数上单调递增,又,所以.故选:A2.设函数的定义域为,已知为上的减函数,,,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【分析】根据函数单调性与充分必要条件定义判断即可.【详解】若函数是R上的单调递减函数,则,反之不成立,所以是的的充分不必要条件.故选:A二、填空题3.若,则函数在上的值域是______________.【答案】【分析】先根据函数单调性的定义判断函数在上单调递增,进而即可求得值域.【详解】,任取,,且,则,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以函数在上单调递增,则,,所以函数在上的值域是.故答案为:.4.对于函数定义域内的任意且,给出下列结论:(1)(2)(3)(4)其中正确结论为:__.【答案】(2)(3)(4)【分析】举反例否定(1);利用幂的运算性质判断(2);利用幂函数单调性判断(3);利用求差法比较二者的大小判断(4).【详解】(1)当时,,则,故错误;(2),故正确;(3)函数为增函数,则,故正确;小学、初中、高...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
免费
0下载
2008年高考数学试卷(理)(陕西)(解析卷).doc
2008年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练37.docx
高中2024版考评特训卷·数学【新教材】考点练37.docx
免费
0下载
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(五十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(五十五).docx
免费
16下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(二十九).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(二十九).docx
免费
5下载
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
免费
0下载
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 7.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 7.docx
免费
24下载
2016年上海市闵行区高考数学二模试卷(文科).doc
2016年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
免费
0下载
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
免费
13下载
2012年高考数学试卷(理)(浙江)(解析卷).pdf
2012年高考数学试卷(理)(浙江)(解析卷).pdf
免费
0下载
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料