2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共27页】

2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第四章导数及其应用综合检测(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.设是函数的导函数,的图象如图所示,则的图象可能是()A.B.C.D.【答案】D【解析】根据导函数图像得到原函数单调性,再逐一对照选项即可.【详解】解:根据导函数图像,的增区间为,减区间为,观察选项可得D符合,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:D.【点睛】本题考查原函数和导函数图像之间的关系,注意导函数图像重点关注函数值的正负,原函数图像重点关注函数的单调性,是基础题.2.函数在处的切线的倾斜角为()A.B.C.D.【答案】B【分析】求导,结合导数的几何意义分析运算.【详解】由题意可得:,则,可得,所以函数在处的切线的斜率,倾斜角为.故选:B.3.若函数有极值点为0,则()A.B.C.D.【答案】B【分析】求导后根据极值点处导函数为0可得,进而求解即可.【详解】,函数的极值点即方程的实根,则,解得,此时0为的极小值点,所以,故.故选:B.4.函数在区间的最小值、最大值分别为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】D【分析】利用导数求得的单调区间,从而判断出在区间上的最小值和最大值.【详解】,所以在区间和上,即单调递增;在区间上,即单调递减,又,,,所以在区间上的最小值为,最大值为.故选:D5.已知函数,当时,恒有,则实数的取值范围为()A.B.C.D.【答案】C【分析】将函数整理为,令,讨论或时的单调性,当时,恒成立,当时,根据单调性可得当时即,不满足题意,从而可得答案.【详解】.令,则.若,则当时,,为减函数,而,从而当时,,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若,则当时,.为增函数,而,从而当时,即,不合题意.综上可得,的取值范围为.故选:C【点睛】本题考查了导数在不等式恒成立中的应用,考查了分类讨论的思想,属于中档题.6.已知奇函数是定义在上的连续可导函数,其导函数是,当时,恒成立,则下列不等关系一定正确的是A.B.C.D.【答案】C【详解】构造函数,所以,即函数在上单调递减,又为奇函数,所以即,所以,故选C.7.已知,则()A.B.C.D.【答案】A【分析】由结合三角函数的性质可得;构造函数,利用导数可得,即可得解.【详解】[方法一]:构造函数因为当故,故,所以;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设,,所以在单调递增,故,所以,所以,所以,故选A[方法二]:不等式放缩因为当,取得:,故,其中,且当时,,及此时,故,故所以,所以,故选A[方法三]:泰勒展开设,则,,,计算得,故选A.[方法四]:构造函数因为,因为当,所以,即,所以;设小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,所以在单调递增,则,所以,所以,所以,故选:A.[方法五]:【最优解】不等式放缩因为,因为当,所以,即,所以;因为当,取得,故,所以.故选:A.【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式放缩,即可得出大小关系,属于最优解.8.已知是自然对数的底数,函数,若整数m满足,则所有满足条件的m的和为()A.0B.13C.21D.30【答案】C【分析】先讨论时成立,再讨论时,将转化为,构造函数令,进而通过研究函数的图象与性质即可求出符合条件的m的值,然后将所有取值相加即可求出结果.【详解】因为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
免费
0下载
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
免费
5下载
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2024版《微专题》·数学·新高考专练 7.docx
2024版《微专题》·数学·新高考专练 7.docx
免费
17下载
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
11下载
2003年河南高考理科数学真题及答案.doc
2003年河南高考理科数学真题及答案.doc
免费
17下载
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
免费
0下载
2017年上海市松江区高考数学二模试卷.doc
2017年上海市松江区高考数学二模试卷.doc
免费
0下载
2022·微专题·小练习·数学【新高考】专练45.docx
2022·微专题·小练习·数学【新高考】专练45.docx
免费
20下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
免费
0下载
2012年高考数学试卷(理)(陕西)(解析卷).pdf
2012年高考数学试卷(理)(陕西)(解析卷).pdf
免费
0下载
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
免费
0下载
1994年广东高考理科数学真题及答案.doc
1994年广东高考理科数学真题及答案.doc
免费
20下载
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
免费
0下载
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
免费
11下载
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群