小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展05嵌套函数的零点问题(精讲+精练)1.嵌套函数形式:形如f(g(x))2.解决嵌套函数零点个数的一般步骤(1)换元解套,转化为t=g(x)与y=f(t)的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.注:抓住两点:(1)转化换元;(2)充分利用函数的图象与性质.【典例1】已知函数,则函数的零点个数是()A.4B.5C.6D.7分析:令→→作函数与图象→两个交点的横坐标为→、判断的零点个数.【解析】令,则,作出的图象和直线,由图象可得有两个交点,设横坐标为,二、题型精讲精练一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴.当时,有,即有一解;当时,有三个解∴综上,共有4个解,即有4个零点,故选A【题型训练】一、单选题1.(2023春·高三平湖市当湖高级中学校联考期中)已知函数,则函数零点个数最多是()A.10B.12C.14D.16【答案】B【分析】画出的图像,设,首先讨论的根的情况,再分析根的情况即可分析出根的情况,即可得出答案.【详解】画出的图像,如图所示,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由,令,得,设,由图像可知,则,得的图像,如图所示,由图像可知,,①当时,即,没有根;②当时,即,此时有3个根,,,当时,即,有3个根,当时,即,有4个根,当时,即,有4个根,故时,有11个根;③当时,,此时有三个根,,当时,即,有4个根,当时,即,有4个根,当时,即,有4个根,故时,有12个根;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com综上所述,最多有12个根,故选:B.2.(2023春·广东揭阳·高三校联考阶段练习)函数,则函数的零点个数为()A.2B.3C.4D.5【答案】A【分析】令,结合题意得到的两根为,,然后根据函数的单调性和最值进而求解.【详解】令,则,当时,由可得或(舍去);当时,由可得,所以的两根为,,则或,因为在上单调递减,在上单调递增,所以,若,易知方程无解,若,当时,由,得或(舍去),此时方程有唯一的解;当时,由,得,此时方程有唯一的解,综上所述可知函数的零点个数为个,故选:A.3.(2023秋·福建厦门·高三统考期末)已知函数,则方程的实数解的个数至多是()A.5B.6C.7D.8【答案】B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】根据复合方程问题,换元,作函数图象分别看内外层分别讨论方程根的个数情况,即可得答案.【详解】设,则化为,又,所以,,如图为函数的大致图象:由图可得,当时,有两个根,即或,此时方程最多有5个根;当时,有三个根,即或或,此时方程最多有6个根;当时,有两个根,即或,此时方程有4个根;当时,有一个根,即,此时方程有2个根;综上,方程的实数解的个数至多是6个.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.(2023·全国·高三期末)已知函数,若方程的所有实根之和为4,则实数的取值范围是()A.B.C.D.【答案】C【分析】由题对取特殊值,利用数形结合,排除不合题意的选项即得.【详解】令,当时,方程为,即,作出函数及的图象,由图象可知方程的根为或,即或,作出函数的图象,结合图象可得所有根的和为5,不合题意,故BD错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,方程为,即,由图象可知方程的根,即,结合函数的图象,可得方程有四个根,所有根的和为4,满足题意,故A错误.故选:C.5.(2023秋·河南信阳·高三信阳高中校考期末)已知函数,则函数的零点个数是()A.B.C.D.【答案】B【分析】确定函数的值域,利用换元法令,则,则将函数的零点问题转化为函数的图象的交点问题,作函数图象,确定其交点以及其横坐标范围,再结合的图象,即可确定小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com...