2024年新高考数学复习资料素养拓展5 嵌套函数的零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共24页】

2024年新高考数学复习资料素养拓展5 嵌套函数的零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展5 嵌套函数的零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展5 嵌套函数的零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展05嵌套函数的零点问题(精讲+精练)1.嵌套函数形式:形如f(g(x))2.解决嵌套函数零点个数的一般步骤(1)换元解套,转化为t=g(x)与y=f(t)的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.注:抓住两点:(1)转化换元;(2)充分利用函数的图象与性质.【典例1】已知函数,则函数的零点个数是()A.4B.5C.6D.7分析:令→→作函数与图象→两个交点的横坐标为→、判断的零点个数.【解析】令,则,作出的图象和直线,由图象可得有两个交点,设横坐标为,二、题型精讲精练一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴.当时,有,即有一解;当时,有三个解∴综上,共有4个解,即有4个零点,故选A【题型训练】一、单选题1.(2023春·高三平湖市当湖高级中学校联考期中)已知函数,则函数零点个数最多是()A.10B.12C.14D.16【答案】B【分析】画出的图像,设,首先讨论的根的情况,再分析根的情况即可分析出根的情况,即可得出答案.【详解】画出的图像,如图所示,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由,令,得,设,由图像可知,则,得的图像,如图所示,由图像可知,,①当时,即,没有根;②当时,即,此时有3个根,,,当时,即,有3个根,当时,即,有4个根,当时,即,有4个根,故时,有11个根;③当时,,此时有三个根,,当时,即,有4个根,当时,即,有4个根,当时,即,有4个根,故时,有12个根;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com综上所述,最多有12个根,故选:B.2.(2023春·广东揭阳·高三校联考阶段练习)函数,则函数的零点个数为()A.2B.3C.4D.5【答案】A【分析】令,结合题意得到的两根为,,然后根据函数的单调性和最值进而求解.【详解】令,则,当时,由可得或(舍去);当时,由可得,所以的两根为,,则或,因为在上单调递减,在上单调递增,所以,若,易知方程无解,若,当时,由,得或(舍去),此时方程有唯一的解;当时,由,得,此时方程有唯一的解,综上所述可知函数的零点个数为个,故选:A.3.(2023秋·福建厦门·高三统考期末)已知函数,则方程的实数解的个数至多是()A.5B.6C.7D.8【答案】B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】根据复合方程问题,换元,作函数图象分别看内外层分别讨论方程根的个数情况,即可得答案.【详解】设,则化为,又,所以,,如图为函数的大致图象:由图可得,当时,有两个根,即或,此时方程最多有5个根;当时,有三个根,即或或,此时方程最多有6个根;当时,有两个根,即或,此时方程有4个根;当时,有一个根,即,此时方程有2个根;综上,方程的实数解的个数至多是6个.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.(2023·全国·高三期末)已知函数,若方程的所有实根之和为4,则实数的取值范围是()A.B.C.D.【答案】C【分析】由题对取特殊值,利用数形结合,排除不合题意的选项即得.【详解】令,当时,方程为,即,作出函数及的图象,由图象可知方程的根为或,即或,作出函数的图象,结合图象可得所有根的和为5,不合题意,故BD错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,方程为,即,由图象可知方程的根,即,结合函数的图象,可得方程有四个根,所有根的和为4,满足题意,故A错误.故选:C.5.(2023秋·河南信阳·高三信阳高中校考期末)已知函数,则函数的零点个数是()A.B.C.D.【答案】B【分析】确定函数的值域,利用换元法令,则,则将函数的零点问题转化为函数的图象的交点问题,作函数图象,确定其交点以及其横坐标范围,再结合的图象,即可确定小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
免费
0下载
2008年高考数学试卷(理)(陕西)(解析卷).doc
2008年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练37.docx
高中2024版考评特训卷·数学【新教材】考点练37.docx
免费
0下载
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(五十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(五十五).docx
免费
16下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(二十九).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(二十九).docx
免费
5下载
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
免费
0下载
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 7.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 7.docx
免费
24下载
2016年上海市闵行区高考数学二模试卷(文科).doc
2016年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
免费
0下载
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
免费
13下载
2012年高考数学试卷(理)(浙江)(解析卷).pdf
2012年高考数学试卷(理)(浙江)(解析卷).pdf
免费
0下载
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料