2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共12页】

2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展08洛必达法则的应用(精讲+精练)一、前言在高中,涉及到求参数的取值范围时,参数分离后,有时会出现分子与分母之比为两个无穷小之比、两个无穷大之比或两个趋近于零的数之比。这个比值可能是定值也可能是不存在,这时如果我们要计算出他们的比值,就需要运用到洛必达法则。二、洛必达法则定义在一定条件下,通过分子分母分别求导,再求极限来确定未定式的值的方法,称为洛必达法则。三、法则形式1.法则1(型):若函数和满足下列条件:(1)设当时,及;(2)在点处函数和的图像是连续的,即函数和在点处存在导数;(3);则:.2.法则2(型):若函数和满足下列条件:(1)及;(2)在点处函数和的图像是连续的,即函数和在点处存在导数;(3),则:.一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.法则3(型):若函数和满足下列条件:(1)及;(2)在点处函数和的图像是连续的,即函数和在点处存在导数;且;(3),则:=.【特别提醒】(1)将上面公式中的换成洛必达法则也成立。(2)洛必达法则可处理型。(3)首先要检查是否满足型定式,否则用洛必达法会出错。当不满足三个前提条件时,就不能用洛必达法则(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止。(5)高中阶段,洛必达法则一般是用来确定最值,方便解题。四、适用类型的转化(1)型的转化:或;(2)型的转化:(3)、型的转化:幂指函数类二、题型精讲精练小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【典例1】设函数(1)若,求的单调区间;(2)若当时,求的取值范围解:(1)时,,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故,从而当,即时,,而,于是当时,.由可得.从而当时,,故当时,,而,于是当时,.综合得的取值范围为原解在处理第(II)时较难想到,现利用洛必达法则处理如下:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com另解:(II)当时,,对任意实数a,均在;当时,等价于令,则,令,则,,知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。由洛必达法则知,,故,综上,知a的取值范围为【典例2】若不等式对于恒成立,求的取值范围.解:当时,原不等式等价于.记,则f&#039;(x)=xcosx−sinxx2=cosx(x−tanx)x2.且时,,所以.因此在上单调递减(也就是x趋于0时,f(x)最大)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,.所以【典例3】(1)0∙∞型limx→0(xlnx)=limx→0+¿(lnx1x)=limx→0+¿(1x−1x2)=limx→0+¿(−x)=0¿¿¿¿¿¿技巧:将乘积中无穷或0取倒数进而变形到分母上,化为00或∞∞型【典例4】(2)∞-∞型limx→1(1x−1−1lnx)=limx→1(lnx−(x−1)(x−1)lnx)=limx→1(1x−1lnx+x−1x)=limx→1(−1x21x+1x2)=limx→1(−1x+1)=−12技巧:可将无穷通分,进而化为00型【典例5】(3)∞0型转化方法同上,∞0=eln∞0=e0·ln∞=e0·∞limx→∞(1+x)1x=limx→∞eln(1+x)1x=limx→∞e1x·ln(1+x)=elimx→∞ln(x+1)x=elimx→∞1x+11=elimx→∞1x+1=e0=1技巧:可利用对数性质℮lna=a,将函数化为以为℮底数的指数函数,转化为对指数求极限。转化方法如下:1∞=eln1∞=e∞·ln1=e∞·0,这样就化为了0∙∞型【题型训练】1.已知函数f(x)=ex−x−1,若当x≥0时,恒有|f(x)|≤mx2e|x|成立,求实数m的取值范围.【解析】因为f(x)=ex−x−1,所以f&#039;(x)=ex−1,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当x∈(−∞,0)时,f&#039;(x)<0,即f(x)递减,当x∈(0,+∞)时,f&#039;(x)>0,即f(x)递增.若当x≥0时,恒有|f(x)|≤mx2e|x|成立,即恒有0≤f(x)≤mx2ex成立,当x=0时,不等式恒成立.当x>0时,恒有0≤f(x)≤mx2ex成立,即m≥ex−x−1x2ex,令H(x)=ex−x−1x2ex,则H&#039;(x)=x2−2ex+2x+2x3ex.今h(x)=x2−2ex+2x+2,则h&#039;(x)=2x−2ex+2,进一步h&#039;&#039;(...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
免费
3下载
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
免费
6下载
2024年新高考数学复习资料重难点突破01  平面向量中最值、范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 平面向量中最值、范围问题(解析版).docx
免费
0下载
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练109.docx
高中2024版考评特训卷·数学【新教材】考点练109.docx
免费
0下载
2017年高考数学试卷(理)(北京)(空白卷).pdf
2017年高考数学试卷(理)(北京)(空白卷).pdf
免费
0下载
高考数学复习  模拟预测卷01(新课标卷)(原卷版).docx
高考数学复习 模拟预测卷01(新课标卷)(原卷版).docx
免费
0下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
免费
13下载
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
17下载
高中2024版《微专题》·数学(文)·统考版专练 22.docx
高中2024版《微专题》·数学(文)·统考版专练 22.docx
免费
0下载
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2019年高考数学试卷(浙江)(解析卷).doc
2019年高考数学试卷(浙江)(解析卷).doc
免费
0下载
2016年湖南高考理科数学试题及答案.docx
2016年湖南高考理科数学试题及答案.docx
免费
4下载
2009年高考数学试卷(理)(山东)(解析卷).doc
2009年高考数学试卷(理)(山东)(解析卷).doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2017年江苏省高考数学试卷.doc
2017年江苏省高考数学试卷.doc
免费
0下载
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
免费
0下载
2021年全国高考甲卷数学(理)试题(解析版).doc
2021年全国高考甲卷数学(理)试题(解析版).doc
免费
28下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料