2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共12页】

2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展08 洛必达法则的应用(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展08洛必达法则的应用(精讲+精练)一、前言在高中,涉及到求参数的取值范围时,参数分离后,有时会出现分子与分母之比为两个无穷小之比、两个无穷大之比或两个趋近于零的数之比。这个比值可能是定值也可能是不存在,这时如果我们要计算出他们的比值,就需要运用到洛必达法则。二、洛必达法则定义在一定条件下,通过分子分母分别求导,再求极限来确定未定式的值的方法,称为洛必达法则。三、法则形式1.法则1(型):若函数和满足下列条件:(1)设当时,及;(2)在点处函数和的图像是连续的,即函数和在点处存在导数;(3);则:.2.法则2(型):若函数和满足下列条件:(1)及;(2)在点处函数和的图像是连续的,即函数和在点处存在导数;(3),则:.一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.法则3(型):若函数和满足下列条件:(1)及;(2)在点处函数和的图像是连续的,即函数和在点处存在导数;且;(3),则:=.【特别提醒】(1)将上面公式中的换成洛必达法则也成立。(2)洛必达法则可处理型。(3)首先要检查是否满足型定式,否则用洛必达法会出错。当不满足三个前提条件时,就不能用洛必达法则(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止。(5)高中阶段,洛必达法则一般是用来确定最值,方便解题。四、适用类型的转化(1)型的转化:或;(2)型的转化:(3)、型的转化:幂指函数类二、题型精讲精练小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【典例1】设函数(1)若,求的单调区间;(2)若当时,求的取值范围解:(1)时,,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故,从而当,即时,,而,于是当时,.由可得.从而当时,,故当时,,而,于是当时,.综合得的取值范围为原解在处理第(II)时较难想到,现利用洛必达法则处理如下:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com另解:(II)当时,,对任意实数a,均在;当时,等价于令,则,令,则,,知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。由洛必达法则知,,故,综上,知a的取值范围为【典例2】若不等式对于恒成立,求的取值范围.解:当时,原不等式等价于.记,则f&#039;(x)=xcosx−sinxx2=cosx(x−tanx)x2.且时,,所以.因此在上单调递减(也就是x趋于0时,f(x)最大)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,.所以【典例3】(1)0∙∞型limx→0(xlnx)=limx→0+¿(lnx1x)=limx→0+¿(1x−1x2)=limx→0+¿(−x)=0¿¿¿¿¿¿技巧:将乘积中无穷或0取倒数进而变形到分母上,化为00或∞∞型【典例4】(2)∞-∞型limx→1(1x−1−1lnx)=limx→1(lnx−(x−1)(x−1)lnx)=limx→1(1x−1lnx+x−1x)=limx→1(−1x21x+1x2)=limx→1(−1x+1)=−12技巧:可将无穷通分,进而化为00型【典例5】(3)∞0型转化方法同上,∞0=eln∞0=e0·ln∞=e0·∞limx→∞(1+x)1x=limx→∞eln(1+x)1x=limx→∞e1x·ln(1+x)=elimx→∞ln(x+1)x=elimx→∞1x+11=elimx→∞1x+1=e0=1技巧:可利用对数性质℮lna=a,将函数化为以为℮底数的指数函数,转化为对指数求极限。转化方法如下:1∞=eln1∞=e∞·ln1=e∞·0,这样就化为了0∙∞型【题型训练】1.已知函数f(x)=ex−x−1,若当x≥0时,恒有|f(x)|≤mx2e|x|成立,求实数m的取值范围.【解析】因为f(x)=ex−x−1,所以f&#039;(x)=ex−1,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当x∈(−∞,0)时,f&#039;(x)<0,即f(x)递减,当x∈(0,+∞)时,f&#039;(x)>0,即f(x)递增.若当x≥0时,恒有|f(x)|≤mx2e|x|成立,即恒有0≤f(x)≤mx2ex成立,当x=0时,不等式恒成立.当x>0时,恒有0≤f(x)≤mx2ex成立,即m≥ex−x−1x2ex,令H(x)=ex−x−1x2ex,则H&#039;(x)=x2−2ex+2x+2x3ex.今h(x)=x2−2ex+2x+2,则h&#039;(x)=2x−2ex+2,进一步h&#039;&#039;(...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年江苏高考数学试卷及答案.doc
2009年江苏高考数学试卷及答案.doc
免费
17下载
高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(学生版).docx.doc
高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(学生版).docx.doc
免费
0下载
第04讲 随机事件、频率与概率(六大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲 随机事件、频率与概率(六大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 9.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 9.docx
免费
1下载
高中数学·必修第二册·湘教版课时作业WORD  课时作业(二十九).docx
高中数学·必修第二册·湘教版课时作业WORD 课时作业(二十九).docx
免费
19下载
高中数学高考数学10大专题技巧--专题37 讨论函数零点或方程根的个数问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题37 讨论函数零点或方程根的个数问题(学生版).docx.doc
免费
0下载
2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (3).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (3).pdf
免费
0下载
2024年新高考数学复习资料第01讲 函数的概念(练习)(解析版).docx
2024年新高考数学复习资料第01讲 函数的概念(练习)(解析版).docx
免费
0下载
2004年山东高考理科数学真题及答案.doc
2004年山东高考理科数学真题及答案.doc
免费
4下载
2003年重庆高考文科数学真题及答案.doc
2003年重庆高考文科数学真题及答案.doc
免费
23下载
1990年广西高考理科数学真题及答案.doc
1990年广西高考理科数学真题及答案.doc
免费
20下载
2013年高考数学试卷(理)(重庆)(空白卷).pdf
2013年高考数学试卷(理)(重庆)(空白卷).pdf
免费
0下载
1999年广西高考理科数学真题及答案.doc
1999年广西高考理科数学真题及答案.doc
免费
15下载
2013年江西省高考数学试卷(文科)往年高考真题.doc
2013年江西省高考数学试卷(文科)往年高考真题.doc
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练43.docx
2022·微专题·小练习·数学·理科【统考版】专练43.docx
免费
25下载
2014年全国统一高考数学试卷(文科)(大纲版)(原卷版).doc
2014年全国统一高考数学试卷(文科)(大纲版)(原卷版).doc
免费
7下载
2024年新高考数学复习资料跟踪训练03 函数的奇偶性、周期性、对称性(原卷版).docx
2024年新高考数学复习资料跟踪训练03 函数的奇偶性、周期性、对称性(原卷版).docx
免费
0下载
2024年新高考数学复习资料第05讲 一元二次不等式与其他常见不等式解法(讲义)(原卷版).docx
2024年新高考数学复习资料第05讲 一元二次不等式与其他常见不等式解法(讲义)(原卷版).docx
免费
0下载
2024版《微专题》·数学(理 )·统考版专练 52.docx
2024版《微专题》·数学(理 )·统考版专练 52.docx
免费
23下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群