2024年新高考数学复习资料素养拓展09 导数中的极值点偏移问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx本文件免费下载 【共11页】

2024年新高考数学复习资料素养拓展09 导数中的极值点偏移问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展09 导数中的极值点偏移问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展09 导数中的极值点偏移问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展09导数中的极值点偏移问题(精讲+精练)一、极值点偏移基本定义对于函数在区间内只有一个极值点,函数与直线交于点,两点,即,且.(1)若,则称函数在区间上极值点偏移.(2)若,则称函数在区间上极值点向左偏移,简称极值点左偏.(3)若,则称函数在区间上极值点向右偏移,简称极值点右偏.如上图所示,为函数的极值点,处对应的曲线的切线的斜率为由上面图像可知,函数的图像分为凸函数和凹函数。当函数图像为凸函数,且极值点左偏时,有;当函数图像为凸函数,且极值点右偏时,有。一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当函数图像为凹函数,且极值点左偏时,;当函数图像为凹函数,且极值点右移时,有。如图所示,上图的函数图像为凸函数,且极值点右移,和处对应的函数值相等,我们可以作关于的对称点,则,且,故,即,故我们可以构造函数,只需要判断函数的单调性,然后根据单调性判断函数的最小值,只要满足,我们就可以得到。同理,我们可以得到凸函数极值点左移以及凹函数极值点左移或右移的构造函数。二、答题模板(对称构造)若已知函数满足,为函数的极值点,求证:.(1)讨论函数的单调性并求出的极值点;假设此处在上单调递减,在上单调递增.[来源:Z,xx,k.Com](2)构造;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com注:此处根据题意需要还可以构造成的形式.[来源:Zxxk.Com](3)通过求导讨论的单调性,判断出在某段区间上的正负,并得出与的大小关系;假设此处在上单调递增,那么我们便可得出,从而得到:时,.(4)不妨设,通过的单调性,,与的大小关系得出结论;接上述情况,由于时,且,,故,又因为,且在上单调递减,从而得到,从而得证.(5)若要证明,还需进一步讨论与的大小,得出所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为,故,由于在上单调递减,故.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三、其他方法1.比值代换比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用表示)表示两个极值点,即,化为单变量的函数不等式,继而将所求解问题转化为关于的函数问题求解.2.对数均值不等式两个正数和的对数平均定义:对数平均与算术平均、几何平均的大小关系:(此式记为对数平均不等式)取等条件:当且仅当时,等号成立.3.指数不等式在对数均值不等式中,设,,则,根据对数均值不等式有如下关系:【典例1】已知函数.(1)若函数有两个零点,求的取值范围;二、题型精讲精练小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)设是函数的两个极值点,证明:.【答案】(1)(2)证明过程见解析.【详解】(1),该方程有两个不等实根,由,所以直线与函数的图象有两个不同交点,由,当时,单调递减,当时,单调递增,因此,当时,,当,,如下图所示:所以要想有两个不同交点,只需,即的取值范围为;(2)因为是函数的两个极值点,所以,由(1)可知:,不妨设,要证明,只需证明,显然,由(2)可知:当时,单调递增,所以只需证明,而,所以证明即可,即证明函数在时恒成立,由,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com显然当时,,因此函数单调递减,所以当时,有,所以当时,恒成立,因此命题得以证明.【典例2】已知函数(1)当,研究的单调性;(2)令,若存在使得,求证.【答案】(1)在上单调递减,在上单调递增(2)证明见解析(1),,在上单调递增,且,所以时,,时,,在上单调递减,在上单调递增;(2),(),时,递增,时,,递减,时,,存在使得,则,令,,,令,则,在上单调递增,,,,,.【题型训练1-刷真题】1.(2022届高考全国卷甲理22题)已知函数.小学、初中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2014年高考数学试卷(理)(湖南)(解析卷).pdf
2014年高考数学试卷(理)(湖南)(解析卷).pdf
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
免费
0下载
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2008年高考数学试卷(理)(辽宁)(解析卷).doc
2008年高考数学试卷(理)(辽宁)(解析卷).doc
免费
0下载
2017年广东高考(理科)数学(原卷版).doc
2017年广东高考(理科)数学(原卷版).doc
免费
26下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(二十四).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(二十四).doc
免费
28下载
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
免费
0下载
安徽A10联盟2023届高考最后一卷数学试题.pdf
安徽A10联盟2023届高考最后一卷数学试题.pdf
免费
18下载
2012年高考数学试卷(理)(天津)(解析卷).doc
2012年高考数学试卷(理)(天津)(解析卷).doc
免费
1下载
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
免费
0下载
2010年高考重庆理科数学试题及答案(精校版).doc
2010年高考重庆理科数学试题及答案(精校版).doc
免费
4下载
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
免费
0下载
1993年江苏高考文科数学真题及答案.doc
1993年江苏高考文科数学真题及答案.doc
免费
13下载
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2014年江西省高考数学试卷(理科).doc
2014年江西省高考数学试卷(理科).doc
免费
0下载
高中数学状元笔记 06几何&统计(已去水印).pdf
高中数学状元笔记 06几何&统计(已去水印).pdf
免费
19下载
1995年云南高考文科数学真题及答案.doc
1995年云南高考文科数学真题及答案.doc
免费
23下载
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
免费
20下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群