2024年新高考数学复习资料素养拓展10 导数中的隐零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共18页】

2024年新高考数学复习资料素养拓展10 导数中的隐零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展10 导数中的隐零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展10 导数中的隐零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展10导数中的隐零点问题(精讲+精练)一、隐零点问题隐零点问题是函数零点中常见的问题之一,其源于含指对函数的方程无精确解,这样我们只能得到存在性之后去估计大致的范围(数值计算不再考察之列).基本步骤:第1步:用零点存在性定理判定导函数零点的存在性,列出零点方程,并结合的单调性得到零点的范围;第2步:以零点为分界点,说明导函数的正负,进而得到的最值表达式;第3步:将零点方程适当变形,整体代入最值式子进行化简,要么消除最值式中的指对项,要么消除其中的参数项,从而得到最值式的估计.下面我们通过实例来分析.二、函数零点的存在性定理函数零点存在性定理:设函数在闭区间上连续,且,那么在开区间内至少有函数的一个零点,即至少有一点,使得.三、常见类型1.隐零点代换2.隐零点同构实际上,很多隐零点问题产生的原因就是含有指对项,而这类问题由往往具有同构特征,所以下面我们看到的这两个问题,它的隐零点代换则需要同构才能做出,否则,我们可能很难找到隐零点合适的代换化简一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方向.例如:3.隐零点的估计【典例1】已知函数.(1)当时,求曲线在点处的切线与两坐标轴围成的三角形面积;(2)若,求的取值范围.解析:(1)切线方程为,故切线与坐标轴交点坐标分别为,所求三角形面积为.(2)由于,,且.设,则即在上单调递增,当时,,∴,∴二、题型精讲精练小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com成立.当时,,,∴存在唯一,使得,且当时,当时,,,因此,故恒成立;当时,∴不是恒成立.综上所述,实数的取值范围是.【典例2】已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.解析:(1)有两个零点关于的方程有两个相异实根,由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,,又,当时,,当时,当时,,有两个零点时,实数的取值范围为;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)当时,,原命题等价于对一切恒成立对一切恒成立.令,,令,,则,在上单增,又,,使即①,当时,,当时,,即在递减,在递增,由①知,函数在单调递增,即,,实数的取值范围为.【典例3】已知函数,且.(1)求;(2)证明:存在唯一的极大值点,且.解析:(1).(2)由(1)知,.设,则.当时,;当时,.所以在单调递减,在小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com单调递增.又,,,所以在有唯一零点,在有唯一零点1,且当时,;当时,;当时,.因此,所以是的唯一极大值点.由得,故.由得,.因为是在的最大值点,由,得.所以.【题型训练】1.已知函数.(1)若,求的极小值.(2)讨论函数的单调性;(3)当时,证明:有且只有个零点.【答案】(1)(2)答案见解析(3)证明见解析【详解】(1)当时,的定义域为,,在区间递减;在区间递增.所以当时,取得极小值.(2)的定义域为,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,当时,恒成立,所以即在上递增.当时,在区间即递减;在区间即递增.(3)当时,,由(2)知,在上递增,,所以存在使得,即.在区间,递减;在区间递增.所以当时,取得极小值也即最小值为,由于,所以.,,根据零点存在性定理可知在区间和,各有个零点,所以有个零点.2.已知函数,.(1)当时,求函数在点处的切线方程;(2)设,若,,都有,求实数的取值范围.【答案】(1)(2)【详解】(1)当时,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com ,∴切点为, ,∴切线斜率,∴切线方程为(2),.当时,,单调递增,∴,.,,,令,,∴在上单调递增,且,,∴,使得,即,也即.令,,,显然时,,单调...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2014年高考数学试卷(理)(湖南)(解析卷).pdf
2014年高考数学试卷(理)(湖南)(解析卷).pdf
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
免费
0下载
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2008年高考数学试卷(理)(辽宁)(解析卷).doc
2008年高考数学试卷(理)(辽宁)(解析卷).doc
免费
0下载
2017年广东高考(理科)数学(原卷版).doc
2017年广东高考(理科)数学(原卷版).doc
免费
26下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(二十四).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(二十四).doc
免费
28下载
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
免费
0下载
安徽A10联盟2023届高考最后一卷数学试题.pdf
安徽A10联盟2023届高考最后一卷数学试题.pdf
免费
18下载
2012年高考数学试卷(理)(天津)(解析卷).doc
2012年高考数学试卷(理)(天津)(解析卷).doc
免费
1下载
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
免费
0下载
2010年高考重庆理科数学试题及答案(精校版).doc
2010年高考重庆理科数学试题及答案(精校版).doc
免费
4下载
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
免费
0下载
1993年江苏高考文科数学真题及答案.doc
1993年江苏高考文科数学真题及答案.doc
免费
13下载
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2014年江西省高考数学试卷(理科).doc
2014年江西省高考数学试卷(理科).doc
免费
0下载
高中数学状元笔记 06几何&统计(已去水印).pdf
高中数学状元笔记 06几何&统计(已去水印).pdf
免费
19下载
1995年云南高考文科数学真题及答案.doc
1995年云南高考文科数学真题及答案.doc
免费
23下载
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
免费
20下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群