2024年新高考数学复习资料素养拓展12 ω的值和取值范围问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共33页】

2024年新高考数学复习资料素养拓展12 ω的值和取值范围问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展12 ω的值和取值范围问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展12 ω的值和取值范围问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展12ω的值和取值范围问题(精讲+精练)一、与对称性有关(1)y=Asin(ωx+φ)相邻两条对称轴之间的距离是T2;(2)y=Asin(ωx+φ)相邻两个对称中心的距离是T2;(3)y=Asin(ωx+φ)相邻两条对称轴与对称中心距离T4;二、与单调性有关三、与零点和极值点有关对于区间长度为定值的动区间,若区间上至少含有k个零点,需要确定含有k个零点的区间长度,一般和周期相关,若在在区间至多含有k个零点,需要确定包含k+1个零点的区间长度的最小值,极值点的处理方法也是类似的.【典例1】若存在实数,使得函数(>0)的图象的一个对称中心为(,0),则ω的取值范围为()二、题型精讲精练一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【详解】由于函数的图象的一个对称中心为,所以,所以,由于,则,因为,所以可得:,故选:C【典例2】已知函数在区间上单调递减,则正实数的取值范围是()A.B.C.D.【详解】由题意知,,令,解得,又函数在区间上单调递减,所以,解得,当时,.故选:C.【典例3】已知函数在上恰有2个不同的零点,则的取值范围为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【详解】由题意可得,由,得,因为函数在上恰有2个不同的零点,所以,即,故选:A【题型训练1-刷真题】一、填空题2.(2023·全国·统考高考真题)已知函数在区间有且仅有3个零点,则的取值范围是________.【答案】【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.二、单选题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(2022·全国·统考高考真题)设函数在区间恰有三个极值点、两个零点,则的取值范围是()A.B.C.D.【答案】C【分析】由的取值范围得到的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得,因为,所以,要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:则,解得,即.故选:C.【题型训练2-刷模拟】1.与对称性有关一、单选题1.(2023春·陕西西安·高三校考阶段练习)将函数的图象向右平移个单位长度得到曲线,若关于点对称,则的最小值是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.3B.6C.9D.12【答案】B【分析】利用三角函数图象变换结论求出变换后的函数图象额解析式,再由余弦函数的对称性的性质求的最小值.【详解】函数的图象向右平移个单位长度得到的曲线的函数解析式为,由已知函数的图象关于点对称,所以,,所以,又,所以的最小值是,故选:B.2.(2023·浙江·统考二模)已知函数,若在区间是单调函数,且,则的值为().A.B.C.或D.或2【答案】B【分析】由在区间是有单调性,可得范围,从而得;由,可得函数关于对称,又,有对称中心为,讨论与是否在同一周期里面相邻的对称轴与对称中心即可.【详解】在区间是有单调性,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,;,函数关于对称,离最近对称轴的距离为;又,有对称中心为;由题意可知:若与为不是同一周期里面相邻的对称轴与对称中心.则,可得,,不符合舍去,若与为同一周期里面相邻的对称轴与对称中心.那么:,可得,.综上可知故选:B3.(2023·安徽马鞍山·统考三模)记函数的最小正周期为,若,且,则()A.B.C.D.【答案】C【分析】由最小正周期可得,再由即可得,即可求得.【详解】函数的最小正周期,则,解得;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又,即是函数的一条对称轴,所以,解得.又,当时,.故选:C.4.(2023·重庆·统考模拟预测)已知函数,若对于任意实数x,都有,则的最小值为()A.2B.C.4D.8【...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2012年高考数学试卷(理)(浙江)(空白卷).pdf
2012年高考数学试卷(理)(浙江)(空白卷).pdf
免费
0下载
高中数学·必修第三册·RJ-B课时作业(word)  课时作业 14.docx
高中数学·必修第三册·RJ-B课时作业(word) 课时作业 14.docx
免费
3下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(六).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(六).docx
免费
26下载
2024年新高考数学复习资料跟踪训练04 二次函数与幂函数(解析版).docx
2024年新高考数学复习资料跟踪训练04 二次函数与幂函数(解析版).docx
免费
0下载
江西省宜春市丰城市第九中学(日新班)2022-2023学年高一下学期期末考试数学试卷.pdf
江西省宜春市丰城市第九中学(日新班)2022-2023学年高一下学期期末考试数学试卷.pdf
免费
6下载
2008年高考数学试卷(文)(江西)(空白卷).doc
2008年高考数学试卷(文)(江西)(空白卷).doc
免费
0下载
2016年高考数学试卷(理)(新课标Ⅰ)(解析卷) (3).pdf
2016年高考数学试卷(理)(新课标Ⅰ)(解析卷) (3).pdf
免费
0下载
2017年高考数学试卷(文)(山东)(空白卷).pdf
2017年高考数学试卷(文)(山东)(空白卷).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科客观题专练 (9).doc
二轮专项分层特训卷··高三数学·理科客观题专练 (9).doc
免费
16下载
2025年新高考数学复习资料2025高考总复习专项复习--概率专题八(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--概率专题八(含解析).doc
免费
0下载
高中2023《微专题·小练习》·数学·文科·L-2专练46.docx
高中2023《微专题·小练习》·数学·文科·L-2专练46.docx
免费
0下载
2006年高考数学真题(理科)(广东自主命题).doc
2006年高考数学真题(理科)(广东自主命题).doc
免费
25下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】方法技巧专练 1.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】方法技巧专练 1.docx
免费
25下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (2).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (2).pdf
免费
0下载
高中数学·选择性必修·第一册·北师大版课时作业WORD  课时作业(二十七).doc
高中数学·选择性必修·第一册·北师大版课时作业WORD 课时作业(二十七).doc
免费
16下载
2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版).doc
2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版).doc
免费
14下载
2018年上海高考数学真题及解析.doc
2018年上海高考数学真题及解析.doc
免费
1下载
精品解析:江苏省百校大联考2024届高三上学期第五次考试数学试题(原卷版).docx
精品解析:江苏省百校大联考2024届高三上学期第五次考试数学试题(原卷版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(学生版).docx.doc
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(学生版).docx.doc
免费
0下载
2025年新高考数学复习资料微专题19 数列的递推关系.pptx
2025年新高考数学复习资料微专题19 数列的递推关系.pptx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群