2024年新高考数学复习资料专题06 立体几何(解答题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx本文件免费下载 【共50页】

2024年新高考数学复习资料专题06 立体几何(解答题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
2024年新高考数学复习资料专题06 立体几何(解答题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
2024年新高考数学复习资料专题06 立体几何(解答题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com五年(2019-2023)年高考真题分项汇编专题05立体几何(解答题)立体几何在理科数解答题中一般出现在20题左右的位置。主要考查空间几何体对应的空间角问题,考查二面角的频率比较大。1.(2023·全国·新课标Ⅰ卷)如图,在正四棱柱中,.点分别在棱,上,.(1)证明:;(2)点在棱上,当二面角为时,求.【答案】(1)证明见解析;(2)1【分析】(1)建立空间直角坐标系,利用向量坐标相等证明;(2)设,利用向量法求二面角,建立方程求出即可得解.【详解】(1)以为坐标原点,所在直线为轴建立空间直角坐标系,如图,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,,,又不在同一条直线上,.(2)设,则,设平面的法向量,则,令,得,,设平面的法向量,则,令,得,,,化简可得,,解得或,或,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.2.(20203全国·统考新课标Ⅱ卷)如图,三棱锥中,,,,E为BC的中点.(1)证明:;(2)点F满足,求二面角的正弦值.【答案】(1)证明见解析;(2).【分析】(1)根据题意易证平面,从而证得;(2)由题可证平面,所以以点为原点,所在直线分别为轴,建立空间直角坐标系,再求出平面的一个法向量,根据二面角的向量公式以及同角三角函数关系即可解出.【详解】(1)连接,因为E为BC中点,,所以①,因为,,所以与均为等边三角形,,从而②,由①②,,平面,所以,平面,而平面,所以.(2)不妨设,,.,,又,平面平面.以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:设,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设平面与平面的一个法向量分别为,二面角平面角为,而,因为,所以,即有,,取,所以;,取,所以,所以,,从而.所以二面角的正弦值为.3.(2023·全国·统考高考乙卷)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.(2)法一:由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.法二:过点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com作轴平面,建立如图所示的空间直角坐标系,设,所以由求出点坐标,再求出平面与平面BEF的法向量,由即可证明;(3)法一:由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.法二:求出平面与平面的法向量,由二面角的向量公式求解即可.【详解】(1)连接,设,则,,,则,解得,则为的中点,由分别为的中点,于是,即,则四边形为平行四边形,,又平面平面,所以平面.(2)法一:由(1)可知,则,得,因此,则,有,又,平面,则有平面,又平面,所以平面平面.法二:因为,过点作轴平面,建立如图所示的空间直角坐标系,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在中,,在中,,设,所以由可得:,可得:,所以,则,所以,,设平面的法向量为,则,得,令,则,所以,设平面的法向量为,则,得,令,则,所以,,所以平面平面BEF;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)法一:过点作交于点,设,由,得,且,又由(2)知,,则为二面角的平面角,因为分别为的中点,因此为的重心,即有,又,即有,,解得,同理得,于是,即有,则,从而,,在中,,于是,,所以二面角的正弦值为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com法二:平面的法向量为,平面的法向量为,所以,因为,所以,故二面角的正弦值为.4.(2023·全国·统考高考甲卷)如图,在三棱柱中,底面ABC,,到平面的距离为1.(1)证明:;(2)已知与的距离为2,求与平面所成角的正弦值.【答案】(1)证明见解析(2)【...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料