2024年新高考数学复习资料重难点突破02 向量中的隐圆问题(四大题型)(原卷版).docx本文件免费下载 【共6页】

2024年新高考数学复习资料重难点突破02 向量中的隐圆问题(四大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破02 向量中的隐圆问题(四大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破02 向量中的隐圆问题(四大题型)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破02向量中的隐圆问题目录技巧一.向量极化恒等式推出的隐圆乘积型:⃗PA⋅⃗PB=λ定理:平面内,若A,B为定点,且⃗PA⋅⃗PB=λ,则P的轨迹是以M为圆心√λ+14AB2为半径的圆证明:由⃗PA⋅⃗PB=λ,根据极化恒等式可知,PM2−14AB2=λ,所以PM=√14AB2+λ,P的轨迹是以M为圆心√λ+14AB2为半径的圆.技巧二.极化恒等式和型:PA2+PB2=λ定理:若A,B为定点,P满足PA2+PB2=λ,则P的轨迹是以AB中点M为圆心,√λ−12AB22为半径的圆。(λ−12AB2>0)证明:PA2+PB2=2[PM2+(12AB)2]=λ,所以PM=√λ−12AB22,即P的轨迹是以AB中点M为圆小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com心,√λ−12AB22为半径的圆.技巧三.定幂方和型若A,B为定点,{mPA2+PB2=n¿{PA2+mPB2=n¿¿¿¿,则P的轨迹为圆.证明:mPA2+PB2=n⇒m[(x+c)2+y2]+[(x−c)2+y2]=n⇒(m+1)(x2+y2)+2c(m−1)x+(m+1)c2−n=0⇒x2+y2+2(m−1)cm+1⋅x+c2(m+1)−nm+1=0.技巧四.与向量模相关构成隐圆坐标法妙解题型一:数量积隐圆例1.(2023·上海松江·校考模拟预测)在中,.为所在平面内的动点,且,若,则给出下面四个结论:①的最小值为;②的最小值为;③的最大值为;④的最大值为8.其中,正确结论的个数是()A.1B.2C.3D.4例2.(2023·全国·高三专题练习)若正的边长为4,为所在平面内的动点,且,则的取值范围是()A.B.C.D.例3.(2023·山东菏泽·高一统考期中)在中,AC=5,BC=12,∠C=90°.P为所在平面内的动点,且PC=2,则的取值范围是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式1.(2023·全国·高三专题练习)已知是边长为的等边三角形,其中心为O,P为平面内一点,若,则的最小值是A.B.C.D.变式2.(2023·北京·高三专题练习)为等边三角形,且边长为,则与的夹角大小为,若,,则的最小值为___________.变式3.(2023·全国·高三专题练习)已知圆,点,M、N为圆O上两个不同的点,且若,则的最小值为______.题型二:平方和隐圆例4.(2023·全国·高三专题练习)已知是单位向量,满足,则的最大值为________.例5.(2023·上海·高三专题练习)已知平面向量、满足,,设,则________.例6.(2023·江苏·高二专题练习)在平面直角坐标系中,已知点,,圆,若圆上存在点,使得,则实数的取值范围为()A.B.C.D.变式4.(2023·江苏·高二专题练习)在平面直角坐标系中,已知直线与点,若直线上存在点满足(为坐标原点),则实数的取值范围是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式5.(2023·宁夏吴忠·高二吴忠中学校考阶段练习)设,,O为坐标原点,点P满足,若直线上存在点Q使得,则实数k的取值范围为()A.B.C.D.变式6.(2023·江西吉安·高三吉安三中校考阶段练习)在平面直角坐标系xOy中,已知圆C:,点,若圆C上存在点M,满足,则点M的纵坐标的取值范围是___________.题型三:定幂方和隐圆例7.(2023·湖南长沙·高一长沙一中校考期末)已知点,,直线:上存在点,使得成立,则实数的取值范围是______.例8.(2023·浙江·高三期末)已如平面向量、、,满足,,,,则的最大值为()A.B.C.D.例9.(2023·河北衡水·高三河北衡水中学校考期中)已知平面单位向量,的夹角为60°,向量满足,若对任意的,记的最小值为M,则M的最大值为A.B.C.D.变式7.(2023·江苏·高三专题练习)已知,是两个单位向量,与,共面的向量满足,则的最大值为()A.B.2C.D.1变式8.(2023·浙江舟山·高一舟山中学校考阶段练习)已知、、是平面向量,是单位向量.若小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,则的最大值为_______.变式9.(2023·四川达州·高二四川省大竹中学校考期中)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足,则的最小值是_______.变式10.(2023·全国·高三专题练习...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群