小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破02向量中的隐圆问题目录技巧一.向量极化恒等式推出的隐圆乘积型:⃗PA⋅⃗PB=λ定理:平面内,若A,B为定点,且⃗PA⋅⃗PB=λ,则P的轨迹是以M为圆心√λ+14AB2为半径的圆证明:由⃗PA⋅⃗PB=λ,根据极化恒等式可知,PM2−14AB2=λ,所以PM=√14AB2+λ,P的轨迹是以M为圆心√λ+14AB2为半径的圆.技巧二.极化恒等式和型:PA2+PB2=λ定理:若A,B为定点,P满足PA2+PB2=λ,则P的轨迹是以AB中点M为圆心,√λ−12AB22为半径的圆。(λ−12AB2>0)证明:PA2+PB2=2[PM2+(12AB)2]=λ,所以PM=√λ−12AB22,即P的轨迹是以AB中点M为圆小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com心,√λ−12AB22为半径的圆.技巧三.定幂方和型若A,B为定点,{mPA2+PB2=n¿{PA2+mPB2=n¿¿¿¿,则P的轨迹为圆.证明:mPA2+PB2=n⇒m[(x+c)2+y2]+[(x−c)2+y2]=n⇒(m+1)(x2+y2)+2c(m−1)x+(m+1)c2−n=0⇒x2+y2+2(m−1)cm+1⋅x+c2(m+1)−nm+1=0.技巧四.与向量模相关构成隐圆坐标法妙解题型一:数量积隐圆例1.(2023·上海松江·校考模拟预测)在中,.为所在平面内的动点,且,若,则给出下面四个结论:①的最小值为;②的最小值为;③的最大值为;④的最大值为8.其中,正确结论的个数是()A.1B.2C.3D.4例2.(2023·全国·高三专题练习)若正的边长为4,为所在平面内的动点,且,则的取值范围是()A.B.C.D.例3.(2023·山东菏泽·高一统考期中)在中,AC=5,BC=12,∠C=90°.P为所在平面内的动点,且PC=2,则的取值范围是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式1.(2023·全国·高三专题练习)已知是边长为的等边三角形,其中心为O,P为平面内一点,若,则的最小值是A.B.C.D.变式2.(2023·北京·高三专题练习)为等边三角形,且边长为,则与的夹角大小为,若,,则的最小值为___________.变式3.(2023·全国·高三专题练习)已知圆,点,M、N为圆O上两个不同的点,且若,则的最小值为______.题型二:平方和隐圆例4.(2023·全国·高三专题练习)已知是单位向量,满足,则的最大值为________.例5.(2023·上海·高三专题练习)已知平面向量、满足,,设,则________.例6.(2023·江苏·高二专题练习)在平面直角坐标系中,已知点,,圆,若圆上存在点,使得,则实数的取值范围为()A.B.C.D.变式4.(2023·江苏·高二专题练习)在平面直角坐标系中,已知直线与点,若直线上存在点满足(为坐标原点),则实数的取值范围是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式5.(2023·宁夏吴忠·高二吴忠中学校考阶段练习)设,,O为坐标原点,点P满足,若直线上存在点Q使得,则实数k的取值范围为()A.B.C.D.变式6.(2023·江西吉安·高三吉安三中校考阶段练习)在平面直角坐标系xOy中,已知圆C:,点,若圆C上存在点M,满足,则点M的纵坐标的取值范围是___________.题型三:定幂方和隐圆例7.(2023·湖南长沙·高一长沙一中校考期末)已知点,,直线:上存在点,使得成立,则实数的取值范围是______.例8.(2023·浙江·高三期末)已如平面向量、、,满足,,,,则的最大值为()A.B.C.D.例9.(2023·河北衡水·高三河北衡水中学校考期中)已知平面单位向量,的夹角为60°,向量满足,若对任意的,记的最小值为M,则M的最大值为A.B.C.D.变式7.(2023·江苏·高三专题练习)已知,是两个单位向量,与,共面的向量满足,则的最大值为()A.B.2C.D.1变式8.(2023·浙江舟山·高一舟山中学校考阶段练习)已知、、是平面向量,是单位向量.若小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,则的最大值为_______.变式9.(2023·四川达州·高二四川省大竹中学校考期中)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足,则的最小值是_______.变式10.(2023·全国·高三专题练习...