2024年新高考数学复习资料第04讲 基本不等式及其应用(讲义)(原卷版).docx本文件免费下载 【共10页】

2024年新高考数学复习资料第04讲 基本不等式及其应用(讲义)(原卷版).docx
2024年新高考数学复习资料第04讲 基本不等式及其应用(讲义)(原卷版).docx
2024年新高考数学复习资料第04讲 基本不等式及其应用(讲义)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第04讲基本不等式及其应用目录考点要求考题统计考情分析(1)了解基本不等式的推导过程.(2)会用基本不等式解决简单的最值问题.(3)理解基本不等式在实际问题中的应用.2022年II卷第12题,5分2021年乙卷第8题,5分2020年天津卷第14题,5分高考对基本不等式的考比定,查较稳考内、率、题型均变化不查容频难度大,应当关注利用基本不等式大小适、求最值和求取值的问题.判断范围1、基本不等式如果,那么,当且仅当时,等号成立.其中,叫作的算术平均数,叫作的几何平均数.即正数的算术平均数不小于它们的几何平均数.基本不等式1:若,则,当且仅当时取等号;基本不等式2:若,则(或),当且仅当时取等号.注意(1)基本不等式的前提是一正二定三相等;其中一正指正数,二定指求“”“”“”“”“”小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com最值时和或积为定值,三相等指满足等号成立的条件.(“”2)连续使用不等式要注意取得一致.【解题方法总结】1、几个重要的不等式(1)(2)基本不等式:如果,则(当且仅当“时取”“).”特例:(同号).(3)其他变形:①(沟通两和与两平方和的不等关系式)②(沟通两积与两平方和的不等关系式)③(沟通两积与两和的不等关系式)④重要不等式串:即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).2、均值定理已知.(1)如果(定值),则(当且仅当“时取”“=”).即和为定“值,积有最大值.”(2)如果(定值),则(当且仅当“时取”“=”).即积为定值,和有最小值.”3、常见求最值模型模型一:,当且仅当时等号成立;模型二:,当且仅当时等号成立;模型三:,当且仅当时等号成立;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com模型四:,当且仅当时等号成立.题型一:基本不等式及其应用【解题方法总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例1.(2023·辽宁·校联考二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设,,用该图形能证明的不等式为().A.B.C.D.例2.(2023·全国·高三专题练习)已知x,y都是正数,且,则下列选项不恒成立的是()A.B.C.D.例3.(2023·江苏·高三专题练习)下列运用基本不等式求最值,使用正确的个数是()已知,求的最小值;解答过程:;求函数的最小值;解答过程:可化得;设,求的最小值;解答过程:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当且仅当即时等号成立,把代入得最小值为4.A.0个B.1个C.2个D.3个题型二:直接法求最值【解题方法总结】直接利用基本不等式求解,注意取等条件.例4.(2023·河北·高三学业考试)若,,且,则的最大值为______.例5.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)若,,且,则的最小值是____________.例6.(2023·天津南开·统考一模)已知实数,则的最小值为___________.题型三:常规凑配法求最值【解题方法总结】1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2、注意验证取得条件.例7.(2023·全国·高三专题练习)若,则的最小值为___________.例8.(2023·全国·高三专题练习)已知,则的最小值为__________.例9.(2023·全国·高三专题练习)若,则的最小值为______例10.(2023·上海浦东新·高三华师大二附中校考阶段练习)若关于x的不等式的解集为,则的最小值为_________.题型四:消参法求最值【解题方法总结】消参法就是对应不等式中的两元问题,用一个参数表示一个参数,再利用基本不等式进行求解.解另题过程中要注意一正,二定,三相等这三个条件一不可“”缺!小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例11.(2023·全国·高三专题练习)已知正实数a,b满足,则...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群