2024年新高考数学复习资料第04讲 基本不等式及其应用(练习)(解析版).docx本文件免费下载 【共13页】

2024年新高考数学复习资料第04讲 基本不等式及其应用(练习)(解析版).docx
2024年新高考数学复习资料第04讲 基本不等式及其应用(练习)(解析版).docx
2024年新高考数学复习资料第04讲 基本不等式及其应用(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第04讲基本不等式及其应用(模拟精练+真题演练)1.(2023·四川成都·三模)设为正项等差数列的前项和.若,则的最小值为()A.B.C.D.【答案】D【解析】由等差数列的前项和公式,可得,可得,又由且,所以,当且仅当时,即时,等号成立,所以的最小值为.故选:D.2.(2023·北京房山·统考二模)下列函数中,是偶函数且有最小值的是()A.B.C.D.【答案】D【解析】对A,二次函数的对称轴为,不是偶函数,故A错误;对B,函数的定义域为,定义域不关于原点对称,所以不是偶函数,故B错误;对C,,定义域为,所以函数是偶函数,结合三角函数的性质易判断函数无最小值,故C错误;对D,,定义域为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以函数是偶函数,因为,,所以,当且仅当,即时取等号,所以函数有最小值,故D正确.故选:D3.(2023·海南海口·校联考模拟预测)若正实数,满足.则的最小值为()A.12B.25C.27D.36【答案】C【解析】因为,所以.因为,所以,当且仅当,即,时,等号成立,所以,的最小值为27.故选:C4.(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)已知实数满足,则的最小值是()A.5B.9C.13D.18【答案】B【解析】由,可得,所以,即,且,则,当且仅当,即时,等号成立,所以的最小值为.故选:B.5.(2023·湖南长沙·长郡中学校考一模)已知,则m,n不可能满足的关系是()A.B.C.D.【答案】C【解析】,即,即小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.对于A,成立.对于B,,成立.对于C,,即.故C错误;对于D,成立.故选:C.6.(2023·浙江杭州·统考二模)已知,,且,则ab的最小值为()A.4B.8C.16D.32【答案】C【解析】 ,∴,即:∴, ,,∴,,∴,当且仅当即时取等号,即:,当且仅当时取等号,故的最小值为16.故选:C.7.(2023·河南安阳·统考三模)已知,则下列命题错误的是()A.若,则B.若,则的最小值为4C.若,则的最大值为2D.若,则的最大值为【答案】D【解析】 ,∴,∴,故A正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若,则,当且仅当时等号成立,故B正确;若,则,当且仅当时等号成立,故C正确;若,则,即,当且仅当时等号成立,故D错误.故选:D.8.(2023·海南省直辖县级单位·统考模拟预测)当,时,恒成立,则m的取值范围是()A.B.C.D.【答案】A【解析】当,时,,当且仅当,即时,等号成立,所以的最大值为.所以,即.故选:A.9.(多选题)(2023·全国·模拟预测)已知实数a,b满足,则下列说法正确的有()A.B.C.若,则D.【答案】BC【解析】A选项:,由于函数在R上单调递增,则,即,已知,即,若取,,则,故A错误.B选项:因为,,,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当且仅当,即时等号成立,故B正确.C选项:若,则,且,,由于函数在上单调递增,所以,即,故C正确.D选项:令,,则,故D错误.故选:BC.10.(多选题)(2023·云南玉溪·统考一模)已知,且则下列结论一定正确的有()A.B.C.ab有最大值4D.有最小值9【答案】AC【解析】A选项,,A正确;B选项,找反例,当时,,,,B不正确;C选项,,,当且仅当时取“=”,C正确;D选项,,D不正确.故选:AC.11.(多选题)(2023·海南省直辖县级单位·统考模拟预测)下列说法正确的是()A.若且,则,至少有一个大于2B.,C.若,,则D.的最小值为2【答案】AC【解析】对于A,若,均不大于2,则,则,故,则,至少有一个大于2为真命题,故A正确,对于B,B.,,故B错误,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于C,由得,由得,所以,故C正确,对于D,由于,函数在单调递增,故,D错误,故选:AC12.(多选题)(2023·云南曲靖·统考模拟预测)若实数满足,则()A.且B.的最大值为C.的最小值为7D.【答案】ABD【解析】由,可得,所以且,故A正确...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(七).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(七).docx
免费
15下载
2025年新高考数学复习资料考点巩固卷04 指对幂函数(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷04 指对幂函数(六大考点)(原卷版).docx
免费
0下载
2022届江苏省苏州市八校高三下学期高考适应性检测(三模)数学试题(解析版).docx
2022届江苏省苏州市八校高三下学期高考适应性检测(三模)数学试题(解析版).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】仿真模拟专练(一).docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】仿真模拟专练(一).docx
免费
20下载
2017年高考数学试卷(文)(新课标Ⅲ)(空白卷).doc
2017年高考数学试卷(文)(新课标Ⅲ)(空白卷).doc
免费
0下载
精品解析:江苏省南京市、盐城市2024届高三上学期期末调研测试数学试题(解析版).docx
精品解析:江苏省南京市、盐城市2024届高三上学期期末调研测试数学试题(解析版).docx
免费
0下载
2012年高考数学试卷(理)(新课标)(空白卷) (7).pdf
2012年高考数学试卷(理)(新课标)(空白卷) (7).pdf
免费
0下载
2013年辽宁省高考数学试卷(理科)往年高考真题.doc
2013年辽宁省高考数学试卷(理科)往年高考真题.doc
免费
0下载
1998年四川高考文科数学真题及答案.doc
1998年四川高考文科数学真题及答案.doc
免费
4下载
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2007年高考数学真题(理科)(湖北自主命题).doc
2007年高考数学真题(理科)(湖北自主命题).doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(解析卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(解析卷) (10).pdf
免费
0下载
2021年天津市河北区普通高中学业水平合格性模拟检测数学试题(含答案).pdf
2021年天津市河北区普通高中学业水平合格性模拟检测数学试题(含答案).pdf
免费
6下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
2014年高考数学试卷(理)(广东)(解析卷).doc
2014年高考数学试卷(理)(广东)(解析卷).doc
免费
0下载
2024年新高考数学复习资料押上海高考13-16题(集合、不等式、函数、数列、立体几何、圆锥曲线、概率与统计)原卷版.docx
2024年新高考数学复习资料押上海高考13-16题(集合、不等式、函数、数列、立体几何、圆锥曲线、概率与统计)原卷版.docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第九章限时跟踪检测(五十八) 最值与范围问题(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第九章限时跟踪检测(五十八) 最值与范围问题(含解析).docx
免费
0下载
1997年辽宁高考理科数学真题及答案.doc
1997年辽宁高考理科数学真题及答案.doc
免费
29下载
2020年高考数学试卷(文)(新课标Ⅱ)(解析卷).pdf
2020年高考数学试卷(文)(新课标Ⅱ)(解析卷).pdf
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料