2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.docx本文件免费下载 【共8页】

2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§3.6利用导数证明不等式考试要求导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.题型一将不等式转化为函数的最值问题例1(2023·坊模潍拟)已知函数f(x)=ex-ax-a,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,令g(x)=.证明:当x>0时,g(x)>1.(1)解函数f(x)=ex-ax-a的定域义为R,求得导f′(x)=ex-a,当a≤0,时f′(x)>0恒成立,即f(x)在(-∞,+∞)上增,单调递当a>0,令时f′(x)=ex-a>0,解得x>lna,令f′(x)<0,解得x<lna,即f(x)在(-∞,lna)上,在单调递减(lna,+∞)上增,单调递所以当a≤0,时f(x)在(-∞,+∞)上增,单调递当a>0,时f(x)在(-∞,lna)上,在单调递减(lna,+∞)上增.单调递(2)证明当a=1,时g(x)=,当x>0,时>1⇔ex>1+x+⇔<1,令F(x)=-1,x>0,F′(x)=<0恒成立,则F(x)在(0,+∞)上,单调递减F(x)<F(0)=-1=0,因此<1成立,所以当x>0,时g(x)>1,即原不等式得.证思维升华待不等式的含有同一量,一般地,可以直接造证两边个变时构“左右减”的函数,有的式子要行形,利用究其性和最,借助所造函的性和时对复杂进变导数研单调值构数单调最即可得.值证跟踪训练1设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.(1)解由f(x)=ex-2x+2a(x∈R)知,f′(x)=ex-2.令f′(x)=0,得x=ln2,当x<ln2,时f′(x)<0,函数f(x)在区间(-∞,ln2)上;单调递减当x>ln2,时f′(x)>0,函数f(x)在区间(ln2,+∞)上增,单调递所以f(x)的是单调递减区间(-∞,ln2),增是单调递区间(ln2,+∞),f(x)的小极值为f(ln2)=eln2-2ln2+2a=2-2ln2+2a,无大.极值小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)证明要证当a>ln2-1且x>0,时ex>x2-2ax+1,即证当a>ln2-1且x>0,时ex-x2+2ax-1>0,设g(x)=ex-x2+2ax-1(x>0),则g′(x)=ex-2x+2a,由(1)知g′(x)min=2-2ln2+2a,又a>ln2-1,则g′(x)min>0,于是对∀x∈(0,+∞),都有g′(x)>0,所以g(x)在(0,+∞)上增,单调递于是对∀x>0,都有g(x)>g(0)=0,即ex-x2+2ax-1>0,故ex>x2-2ax+1.题型二将不等式转化为两个函数的最值进行比较例2(2023·州模苏拟)已知函数f(x)=elnx-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明f(x)-+2e≤0.(1)解函的定域数义为(0,+∞), f′(x)=-a=(x>0),∴当a≤0,时f′(x)>0在(0,+∞)上恒成立,故函数f(x)在区间(0,+∞)上增;单调递当a>0,由时f′(x)>0,得0<x<,由f′(x)<0,得x>,即函数f(x)在上增,在上区间单调递.单调递减上,综当a≤0,时f(x)在区间(0,+∞)上增;单调递当a>0,时f(x)在上增,在区间单调递上.单调递减(2)证明明证f(x)-+2e≤0,只需明证f(x)≤-2e,由(1)知,当a=e,函时数f(x)在区间(0,1)上增,在单调递(1,+∞)上,单调递减∴f(x)max=f(1)=-e.令g(x)=-2e(x>0),则g′(x)=,∴当x∈(0,1),时g′(x)<0,函数g(x);单调递减当x∈(1,+∞),时g′(x)>0,函数g(x)增,单调递∴g(x)min=g(1)=-e,∴当x>0,a=e,时f(x)-+2e≤0.思维升华若直接求比或无下手,可待式行形,造函,而导较复杂从时将证进变构两个数从找到可以的中量,到明的目.本例中同含传递间达证标时lnx与ex,不能直接造函,把构数指分离,分算的最,借助最行明.数与对数两边别计它们值值进证小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com跟踪训练2(2023·合肥模拟)已知函数f(x)=ex+x2-x-1.(1)求f(x)的最小值;(2)证明:ex+xlnx+x2-2x>0.(1)解由意可得题f′(x)=ex+2x-1,函则数f′(x)在R上增,且单调递f′(0)=0.由f′(x)>0,得x>0;由f′(x)<0,得x<0.则f(x)在(-∞,0)上,在单调递减(0,+∞)上增,单调递故f(x)min=f(0)=0.(2)证...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年重庆市高考数学试卷(文科).doc
2014年重庆市高考数学试卷(文科).doc
免费
0下载
2024年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
2024年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
免费
0下载
2024年新高考数学复习资料专题3.1 导数的概念及其几何意义与运算【八大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料专题3.1 导数的概念及其几何意义与运算【八大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
1992年高考数学真题(理科)(江苏自主命题).doc
1992年高考数学真题(理科)(江苏自主命题).doc
免费
4下载
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(教师版).docx
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(教师版).docx
免费
0下载
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
免费
0下载
高中数学 题库 高考易错题 理数(答案册).pdf
高中数学 题库 高考易错题 理数(答案册).pdf
免费
0下载
精品解析:江苏省四校联合2024届高三新题型适应性考试数学试题(解析版).docx
精品解析:江苏省四校联合2024届高三新题型适应性考试数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料“8+3+3”小题强化训练(8)(新高考九省联考题型)(原卷版).docx
2024年新高考数学复习资料“8+3+3”小题强化训练(8)(新高考九省联考题型)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(大纲版)(空白卷) (2).pdf
2011年高考数学试卷(理)(大纲版)(空白卷) (2).pdf
免费
0下载
2014年上海市长宁区高考数学一模试卷(理科).doc
2014年上海市长宁区高考数学一模试卷(理科).doc
免费
0下载
2011年海南省高考文科数学试题及答案.doc
2011年海南省高考文科数学试题及答案.doc
免费
7下载
2014年上海市闵行区高考数学二模试卷(文科).doc
2014年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
2009年高考数学试卷(文)(全国卷Ⅰ)(空白卷) (1).pdf
2009年高考数学试卷(文)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2015年安徽省高考数学试卷(理科)往年高考真题.doc
2015年安徽省高考数学试卷(理科)往年高考真题.doc
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (4).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (4).pdf
免费
0下载
专题07 解析几何(三大类型题综合)15区新题速递(解析版).docx
专题07 解析几何(三大类型题综合)15区新题速递(解析版).docx
免费
0下载
2017年高考数学试卷(江苏)(解析卷).pdf
2017年高考数学试卷(江苏)(解析卷).pdf
免费
0下载
高中数学·必修第三册·RJ-B课时作业(word)  详解答案.docx
高中数学·必修第三册·RJ-B课时作业(word) 详解答案.docx
免费
8下载
2022·微专题·小练习·数学·文科【统考版】专练18.docx
2022·微专题·小练习·数学·文科【统考版】专练18.docx
免费
3下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群