专题06 立体几何(解答题)(文科)(解析版).docx本文件免费下载 【共22页】

专题06 立体几何(解答题)(文科)(解析版).docx
专题06 立体几何(解答题)(文科)(解析版).docx
专题06 立体几何(解答题)(文科)(解析版).docx
1五年(2019-2023)年高考真题分项汇编专题05立体几何(解答题)立体几何在文科数高考中属于重点知识点,难度中等。解答题主要是求几何体的体积为主,通常采用的方法是换底换高,对于求高题目主要是等体积法的应用。一、解答题1.(2023·全国·统考高考甲卷)如图,在三棱锥中,,,,,的中点分别为,点在上,.(1)求证://平面;(2)若,求三棱锥的体积.【答案】(1)证明见解析(2)【分析】(1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.(2)作出并证明为棱锥的高,利用三棱锥的体积公式直接可求体积.【详解】(1)连接,设,则,,,则,2解得,则为的中点,由分别为的中点,于是,即,则四边形为平行四边形,,又平面平面,所以平面.(2)过作垂直的延长线交于点,因为是中点,所以,在中,,所以,因为,所以,又,平面,所以平面,又平面,所以,又,平面,所以平面,即三棱锥的高为,因为,所以,所以,又,所以.2.(2023·全国·统考高考乙卷)如图,在三棱柱中,平面.3(1)证明:平面平面;(2)设,求四棱锥的高.【答案】(1)证明见解析.(2)【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2)过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.【详解】(1)证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.(2)如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,4所以四棱锥的高为.因为平面,平面,所以,,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,又因为,所以,即,解得,所以,所以四棱锥的高为.3.(2022·全国·统考高考乙卷题)如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.【答案】(1)证明详见解析(2)【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.【详解】(1)由于,是的中点,所以.5由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)[方法一]:判别几何关系依题意,,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小过作,垂足为,在中,,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.6[方法二]:等体积转换,,是边长为2的等边三角形,连接4.(2022·全国·统考高考甲卷)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.7(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2).【分析】(1)分别取的中点,连接,由平面知识可知,,依题从而可证平面,平面,根据线面垂直的性质定理可知,即可知四边形为平行四边形,于是,最后根据线面平行的判定定理即可证出;(2)再分别取中点,由(1)知,该几何体的体积等于长方体的体积加上四棱锥体积的倍,即可解出.【详解】(1)如图所示:分别取的中点,连接,因为为全等的正三角形,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面.(2)[方法一]:分割法一如图所示:分别取中点,由(1)知,且,同理有,,8,,由平面知识可知,,,,所以该几何体的体积等于长方体的体积加上四棱锥体积的倍.因为,,点到平面的距离即为点到直线的距离,,所以该几何体的体积.[方法二]:分割法二如图所示:连接AC,BD,交于O,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH的体积加上三棱锥A-OEH的倍,再加上三棱锥E-OAB的四倍.容易求得,OE=OF=OG=OH=8,取EH的中点P,连接AP,OP.则EH垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH与三棱锥E-OAB的高均为EM的长.所以该几何体的体...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
免费
30下载
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
免费
0下载
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
免费
0下载
1996年北京高考理科数学真题及答案.doc
1996年北京高考理科数学真题及答案.doc
免费
25下载
2015年高考数学试卷(文)(陕西)(解析卷).doc
2015年高考数学试卷(文)(陕西)(解析卷).doc
免费
0下载
2006年重庆高考理科数学真题及答案.doc
2006年重庆高考理科数学真题及答案.doc
免费
12下载
高中2024版考评特训卷·数学【新教材】考点练63.docx
高中2024版考评特训卷·数学【新教材】考点练63.docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
免费
0下载
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
免费
0下载
专题06 立体几何(解答题)(文科)(解析版).docx
专题06 立体几何(解答题)(文科)(解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
免费
0下载
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
免费
5下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十四).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十四).docx
免费
12下载
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
免费
0下载
2023年上海高考数学真题及答案 .docx
2023年上海高考数学真题及答案 .docx
免费
28下载
1999年广东高考文科数学真题及答案.doc
1999年广东高考文科数学真题及答案.doc
免费
8下载
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
免费
19下载
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群