专题05 立体几何(选填题)(文科)(解析版).docx本文件免费下载 【共36页】

专题05 立体几何(选填题)(文科)(解析版).docx
专题05 立体几何(选填题)(文科)(解析版).docx
专题05 立体几何(选填题)(文科)(解析版).docx
1五年(2019-2023)年高考真题分项汇编专题05立体几何(选填题)立体几何在文科数高考中属于重点知识点,难度中等。包含题型主要是1空间几何体基本性质及表面积体积2空间几何题三视图4空间几何体内切球外接球的应用5空间几何体性质综合应用考点01空间几何体基本性质及表面积体积1.(2023·年全国甲卷)在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.31.A【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB得解.【详解】取中点,连接,如图,是边长为2的等边三角形,,,又平面,,平面,又,,故,即,所以,2故选:A2.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为()A.B.C.D.2.C【分析】先根据线面角的定义求得,从而依次求,,,,再把所有棱长相加即可得解.【详解】如图,过做平面,垂足为,过分别做,,垂足分别为,,连接,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为和,所以.因为平面,平面,所以,因为,平面,,所以平面,因为平面,所以,.同理:,又,故四边形是矩形,所以由得,所以,所以,所以在直角三角形中,在直角三角形中,,,3又因为,所有棱长之和为.故选:C3.(2022·全国乙卷)在正方体中,E,F分别为的中点,则()A.平面平面B.平面平面C.平面平面D.平面平面3.A【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;选项BCD解法一:如图,以点为原点,建立空间直角坐标系,设,则,,则,,设平面的法向量为,则有,可取,同理可得平面的法向量为,平面的法向量为,4平面的法向量为,则,所以平面与平面不垂直,故B错误;因为与不平行,所以平面与平面不平行,故C错误;因为与不平行,所以平面与平面不平行,故D错误,故选:A.选项BCD解法二:解:对于选项B,如图所示,设,,则为平面与平面的交线,在内,作于点,在内,作,交于点,连结,则或其补角为平面与平面所成二面角的平面角,由勾股定理可知:,,底面正方形中,为中点,则,由勾股定理可得,从而有:,5据此可得,即,据此可得平面平面不成立,选项B错误;对于选项C,取的中点,则,由于与平面相交,故平面平面不成立,选项C错误;对于选项D,取的中点,很明显四边形为平行四边形,则,由于与平面相交,故平面平面不成立,选项D错误;故选:A.4.(2022·全国甲卷)在长方体中,已知与平面和平面所成的角均为,则()A.B.AB与平面所成的角为C.D.与平面所成的角为4.D【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:6不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得.对于A,,,,A错误;对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;对于C,,,,C错误;对于D,与平面所成角为,,而,所以.D正确.故选:D.5.(2021·全国乙卷)在正方体中,P为的中点,则直线与所成的角为()A.B.C.D.5.D【分析】平移直线至,将直线与所成的角转化为与所成的角,解三角形即可.【详解】7如图,连接,因为∥,所以或其补角为直线与所成的角,因为平面,所以,又,,所以平面,所以,设正方体棱长为2,则,,所以.故选:D6.(2021·年全国新高考Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.B.C.D.6.B【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.7.(20...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学状元笔记 07高中必备基础知识(已去水印).pdf
高中数学状元笔记 07高中必备基础知识(已去水印).pdf
免费
26下载
2025年新高考数学复习资料第03讲 导数与函数的极值、最值(七大题型)(练习)(解析版).docx
2025年新高考数学复习资料第03讲 导数与函数的极值、最值(七大题型)(练习)(解析版).docx
免费
0下载
2024年新高考数学复习资料专题10 双曲线中的最值问题(原卷版).docx
2024年新高考数学复习资料专题10 双曲线中的最值问题(原卷版).docx
免费
0下载
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(空白卷) (6).pdf
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(空白卷) (6).pdf
免费
0下载
2025年新高考数学复习资料专题突破卷11 平面向量中等和线的应用(解析版).docx
2025年新高考数学复习资料专题突破卷11 平面向量中等和线的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料微专题16 平面向量的基本运算及应用.pptx
2025年新高考数学复习资料微专题16 平面向量的基本运算及应用.pptx
免费
0下载
2023年高考全国甲卷数学(文)真题.docx
2023年高考全国甲卷数学(文)真题.docx
免费
0下载
2024年高考押题预测卷数学(九省新高考新结构卷01)(全解全析).docx
2024年高考押题预测卷数学(九省新高考新结构卷01)(全解全析).docx
免费
11下载
2024年新高考数学复习资料专题19 抛物线中的定点、定值、定直线问题(原卷版).docx
2024年新高考数学复习资料专题19 抛物线中的定点、定值、定直线问题(原卷版).docx
免费
0下载
2006年高考数学真题(理科 )(福建自主命题).doc
2006年高考数学真题(理科 )(福建自主命题).doc
免费
25下载
2023年高考数学试卷(文)(全国甲卷)(空白卷).pdf
2023年高考数学试卷(文)(全国甲卷)(空白卷).pdf
免费
0下载
2008年高考数学真题(理科)(广东自主命题)(原卷版).doc
2008年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练76.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练76.docx
免费
29下载
2005年河南高考理科数学真题及答案.doc
2005年河南高考理科数学真题及答案.doc
免费
16下载
2020年北京市高考文科数学试卷(原卷版).doc
2020年北京市高考文科数学试卷(原卷版).doc
免费
7下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(七).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(七).docx
免费
13下载
【高考数学】备战2024年(新高考专用)专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
【高考数学】备战2024年(新高考专用)专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题21  数量积、角度及参数型定值问题(教师版).docx
高中数学高考数学10大专题技巧--专题21 数量积、角度及参数型定值问题(教师版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷15 空间中的平行垂直与共线面问题(六大考点)(解析版).docx
2025年新高考数学复习资料考点巩固卷15 空间中的平行垂直与共线面问题(六大考点)(解析版).docx
免费
0下载
2024年新高考数学复习资料重难点突破08 极值点偏移(原卷版).docx
2024年新高考数学复习资料重难点突破08 极值点偏移(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群