人教八年级数学上册 专题13.1 等腰(直角)三角形中的分类讨论问题 专项讲练售后微信 403032929(解析版).docx本文件免费下载 【共29页】

人教八年级数学上册 专题13.1 等腰(直角)三角形中的分类讨论问题  专项讲练售后微信 403032929(解析版).docx
人教八年级数学上册 专题13.1 等腰(直角)三角形中的分类讨论问题  专项讲练售后微信 403032929(解析版).docx
人教八年级数学上册 专题13.1 等腰(直角)三角形中的分类讨论问题  专项讲练售后微信 403032929(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题13.1等腰(直角)三角形中的分类讨论问题专项讲练1、等腰三角形中的分类讨论:【解题技巧】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。1.无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。2.“两定一动”等腰三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)即:如图:已知A,B两点是定点,找一点C构成等腰△ABC方法:两圆一线具体图解:①当AB=AC时,以点A为圆心,AB长为半径作⊙A,点C在⊙A上(B,C除外)②当AB=BC时,以点B为圆心,AB长为半径作⊙B,点C在⊙B上(A,E除外)③当AC=BC时,作AB的中垂线,点C在该中垂线上(D除外)例1.(2022·上虞市实验中学初二月考)在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有________个.【答案】7小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时;③当APB,PB=BQ,PQ=CQ时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.变式1.(2022·河南·驻马店市第二初级中学八年级期末)如图,已知中,,在直线BC或射线AC取一点P,使得是等腰三角形,则符合条件的点P有()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.2个B.4个C.5个D.7个【答案】C【分析】分为三种情况:①PA=PB,②AB=AP,③AB=BP,求出即可得出答案.【详解】解:①作线段AB的垂直平分线,交AC于点P,交直线BC于一点,此时PA=PB,共2个点符合条件;②是以A为圆心,以AB长为半径作圆,交直线BC于两点(B和另一个点),交射线AC于一点,此时AB=AP,共2个点符合条件;③以B为圆心,以BA长为半径作圆,交直线BC于两点,交射线AC于一点,共3个点 作线段AB的垂直平分线交直线BC的点,以A为圆心,AB长为半径作圆交直线BC的点,以及以B为圆心,AB长为半径作圆交直线BC与右侧的点,这三个点是同一个点.∴符合条件的一共有:2+2+3−2=5个点,故选:C.【点睛】本题考查了等腰三角形的判定来解决实际问题以及垂直平分线的性质,主要考查学生的理解能力和动手操作能力.变式2.(2022·河北·秦皇岛市第七中学八年级期末)如图,点A、B在直线l的同侧,点C在直线l上,且是等腰三角形.符合条件的点C有()A.5B.4C.3D.2【答案】A【分析】以点为圆心、长为半径画圆,交直线于点;再以点为圆心、长为半径画圆,交小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com直线于点,然后作的垂直平分线,交直线于点,由此即可得.【详解】解:如图,以点为圆心、长为半径画圆,交直线于点;再以点为圆心、长为半径画圆,交直线于点,然后作的垂直平分线,交直线于点.则符合条件的点共有5个,故选:A.【点睛】本题考查了等腰三角形的判定,熟练掌握等腰三角形的判定方法是解题关键.例2.(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
人教八年级数学下册 专题18.5矩形的性质专项提升训练(重难点培优)-【拔尖特训】2023年培优(解析版)【人教版】.docx
人教八年级数学下册 专题18.5矩形的性质专项提升训练(重难点培优)-【拔尖特训】2023年培优(解析版)【人教版】.docx
免费
0下载
人教八年级数学上册 期中押题检测卷(原卷版).docx
人教八年级数学上册 期中押题检测卷(原卷版).docx
免费
0下载
初中八年级上册数学期末测试压轴题模拟训练(三)(解析版)(人教版).docx
初中八年级上册数学期末测试压轴题模拟训练(三)(解析版)(人教版).docx
免费
12下载
人教八年级数学上册 13.5轴对称(单元检测)(解析版).doc
人教八年级数学上册 13.5轴对称(单元检测)(解析版).doc
免费
0下载
人教八年级数学上册 第十五章 分式(能力提升)八年级数学上册单元过关测试定心卷(人教版)(解析版).docx.docx
人教八年级数学上册 第十五章 分式(能力提升)八年级数学上册单元过关测试定心卷(人教版)(解析版).docx.docx
免费
0下载
初中八年级数学上册第十一章达标测试卷.doc
初中八年级数学上册第十一章达标测试卷.doc
免费
17下载
八年级上册 数学专题01 与三角形的角有关的计算(30题)(原卷版).pdf
八年级上册 数学专题01 与三角形的角有关的计算(30题)(原卷版).pdf
免费
0下载
八年级下册数学华师版考卷9.人教版·福建省福州市期末.doc
八年级下册数学华师版考卷9.人教版·福建省福州市期末.doc
免费
12下载
人教八年级数学上册 06 【人教版】八年级上第三次月考数学试卷(含答案).doc
人教八年级数学上册 06 【人教版】八年级上第三次月考数学试卷(含答案).doc
免费
0下载
初中八年级上册数学14.3 因式分解 同步练习及答案.doc
初中八年级上册数学14.3 因式分解 同步练习及答案.doc
免费
16下载
八年级上册数学期末学情评估卷(24秋).docx
八年级上册数学期末学情评估卷(24秋).docx
免费
0下载
初中八年级下册数学4.1 因式分解.doc
初中八年级下册数学4.1 因式分解.doc
免费
5下载
人教八年级数学上册 专项25  解分式方程(两大类型)(解析版).docx
人教八年级数学上册 专项25 解分式方程(两大类型)(解析版).docx
免费
0下载
2016年秋八年级数学上期末章末复习试卷(1)第十一章三角形(含答案).doc
2016年秋八年级数学上期末章末复习试卷(1)第十一章三角形(含答案).doc
免费
0下载
第17章 勾股定理压轴题考点训练(学生版)-2023年初中数学8年级下册同步压轴题.docx
第17章 勾股定理压轴题考点训练(学生版)-2023年初中数学8年级下册同步压轴题.docx
免费
2下载
期中考试压轴题考点训练2-2023年初中数学8年级上册同步压轴题(学生版).docx
期中考试压轴题考点训练2-2023年初中数学8年级上册同步压轴题(学生版).docx
免费
6下载
沪科版八年级下册同步课时训练:第18章勾股定理复习练习.docx
沪科版八年级下册同步课时训练:第18章勾股定理复习练习.docx
免费
5下载
初中八年级上册数学末数学试卷10.doc
初中八年级上册数学末数学试卷10.doc
免费
10下载
初中八年级上册数学14.1.4 整式的乘法-八年级数学人教版(上)(解析版).doc
初中八年级上册数学14.1.4 整式的乘法-八年级数学人教版(上)(解析版).doc
免费
7下载
04 【人教版】八年级下期末数学试卷(含答案).doc
04 【人教版】八年级下期末数学试卷(含答案).doc
免费
5下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群