2023《微专题·小练习》·数学·理科·L-3专练52 双曲线.docx本文件免费下载 【共2页】

2023《微专题·小练习》·数学·理科·L-3专练52 双曲线.docx
2023《微专题·小练习》·数学·理科·L-3专练52 双曲线.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专练52双曲线命题范围:曲的定、准方程的几何性.双线义标与简单质[基础强化]一、选择题1.平面内到两定点F1(-5,0),F2(5,0)距离差的绝对值等于8的动点P的轨迹方程为()A.-=1B.-=1C.-=1D.-=12.设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若|PQ|=7,则△F2PQ的周长为()A.19B.26C.43D.503.[2022·四川省高三“二模诊拟”]已知双曲线-=1,其焦点到渐近线的距离为1,则该双曲线的离心率为()A.B.C.2D.4.若a>1,则双曲线-y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)5.[2021·全甲卷国]已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为()A.B.C.D.6.[2020·全卷国Ⅲ]设双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.87.设双曲线-=1的左、右焦点分别为F1,F2,过点F1的直线l交双曲线左支于A,B两点,则|BF2|+|AF2|的最小值为()A.B.11C.12D.168.[2022·江西省高三模拟]已知F1(-3,0),F2(3,0)分别是双曲线-=1(a>0,b>0)的左、右焦点,点P是双曲线上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为,则双曲线的标准方程为()A.-=1B.-=1C.x2-=1D.-y2=19.[2022·江西省南昌模拟]已知中心在原点的双曲线E的离心率为2,右顶点为A,过E的左焦点F作x轴的垂线l,且l与E交于M,N两点,若△AMN的面积为9,则E的标准方程为()A.x2-=1B.-=1C.-=1D.x2-=1二、填空题10.[2021·全乙卷国]已知双曲线C:-y2=1(m>0)的一条渐近线为x+my=0,则C的焦距为__________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.[2022·全甲卷国(理),14]若双曲线y2-=1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=________.12.[2022·西省西安中四模陕学]已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.[能力提升]13.[2022·西省西安中模陕学拟]第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O1,O2,O3,O4,O5,若双曲线C以O1,O3为焦点、以直线O2O4为一条渐近线,则C的离心率为()A.B.C.D.214.[2020·全卷国Ⅱ]设O为坐标原点,直线x=a与双曲线C:-=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3215.[2022·江西省高三摸底]已知F1,F2是双曲线C:x2-=1的两个焦点,过F1作C的渐近线的垂线,垂足为P.若△F1PF2的面积为,则C的离心率为________.16.[2022·江西省高三模拟]已知F1、F2分别是双曲线E:-=1(a>0,b>0)的左、右焦点,F2也是抛物线C:y2=2px(p>0)的焦点,点P是双曲线E与抛物线C的一个公共点,若|PF1|=|F1F2|,则双曲线E的离心率为________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群