2015年高考重庆理科数学试题及答案(精校版).docx本文件免费下载 【共15页】

2015年高考重庆理科数学试题及答案(精校版).docx
2015年高考重庆理科数学试题及答案(精校版).docx
2015年高考重庆理科数学试题及答案(精校版).docx
2015年高考重庆市理科数学真题一选择题1.已知集合A=,B=,则()A.B.AB=C.ABD.BA2.在等差数列中,若=4,=2,则=()A.-1B.0C.1D.63.重庆市2013年各月的平均气温()数据的茎叶图如下:则这组数据的中位数是()A.19B.20C.21.5D.234.“x>1”是“(x+2)<0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.若非零向量a,b满足|a|=|b|,且(a-b)(3a+2b),则a与b的夹角为()A.B.C.D.7.执行如图所示的程序框图,若输入K的值为8,则判断框图可填入的条件是()A.sB.sC.sD.s8.已知直线l:x+ay-1=0(aR)是圆C:的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.C.6D.9.若tan=2tan,则()A.1B.2C.3D.410.设双曲线(a>0,b>0)的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.(-1,0)(0,1)B.(-,-1)(1,+)C.(-,0)(0,)D.(-,-)(,+)二、填空题11.设复数a+bi(a,bR)的模为,则(a+bi)(a-bi)=________.12.的展开式中的系数是________(用数字作答).13.在ABC中,B=,AB=,A的角平分线AD=,则AC=_______.14.如图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=_______.15.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为_______.16.若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=_______.17.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望18.已知函数(Ⅰ)求的最小正周期和最大值;(Ⅱ)讨论在上的单调性.19.如图,三棱锥中,平面分别为线段上的点,且(Ⅰ)证明:平面(Ⅱ)求二面角的余弦值。20.设函数(Ⅰ)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;(Ⅱ)若在上为减函数,求的取值范围。21.如图,椭圆的左、右焦点分别为过的直线交椭圆于两点,且(Ⅰ)若求椭圆的标准方程(Ⅱ)若求椭圆的离心率22.在数列中,(I)若求数列的通项公式;(II)若证明:2015年高考重庆市理科数学真题详细答案一选择题1.答案:D解析过程:由于,故A、B、C均错,D是正确的,选D.2.答案:B解析过程:由等差数列的性质得,选B.3.答案:B解析过程:从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.4.答案:B解析过程:,因此选B.5.答案:A解析过程:这是一个三棱锥与半个圆柱的组合体,,故选A.6.答案:A解析过程:由题意,即,所以,,,选A.7.答案:C解析过程:由程序框图,的值依次为0,2,4,6,8,因此(此时)还必须计算一次,因此可填,选C.8.答案:C解析过程:圆标准方程为,圆心为,半径为,因此,,即,.选C.9.答案:C解析过程:=,选C.10.答案:A解析过程:由题意,由双曲线的对称性知在轴上,设,由得,解得,所以,所以,因此渐近线的斜率取值范围是,选A.二、填空题11.答案:3解析过程:由得,即,所以.12.答案:解析过程:二项展开式通项为,令,解得,因此的系数为.13.答案:解析过程:由正弦定理得,即,解得,,从而,所以,.14.答案:2解析过程:首先由切割线定理得,因此,,又,因此,再相交弦定理有,所以.15.答案:解析过程:直线的普通方程为,由得,直角坐标方程为,把代入双曲线方程解得,因此交点.为,其极坐标为.16.答案:-6或4解析过程:由绝对值的性质知的最小值在或时取得,若,或,经检验均不合;若,则,或,经检验合题意,因此或.17.答案:见解析解析过程:(Ⅰ)令A表示事件“三种粽子各取1个”,则由古典概型的概率计算公式有(Ⅱ)X的所...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群