2018年上海高考数学真题试卷(word解析版).doc本文件免费下载 【共26页】

2018年上海高考数学真题试卷(word解析版).doc
2018年上海高考数学真题试卷(word解析版).doc
2018年上海高考数学真题试卷(word解析版).doc
绝密★启用前2018年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式的值为_________.2.双曲线的渐近线方程为_________.3.在的二项展开式中,项的系数为_________.(结果用数值表示)4.设常数,函数。若的反函数的图像经过点,则_________.5.已知复数满足(是虚数单位),则_________.6.记等差数列的前项和为,若,,则_________.7.已知。若幂函数为奇函数,且在上递减,则_________.8.在平面直角坐标系中,已知点,,、是轴上的两个动点,且,则的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列的通项公式为(),前项和为。若,则_________.11.已知常数,函数的图像经过点、。若,则_________.12.已知实数、、、满足:,,,则的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设是椭圆上的动点,则到该椭圆的两个焦点的距离之和为()(A)(B)(C)(D)14.已知,则“”是“”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。设是正六棱柱的一条侧棱,如图。若阳马以该正六棱柱的顶点为顶点、以为底面矩形的一边,则这样的阳马的个数是()(A)(B)(C)(D)16.设是含数1的有限实数集,是定义在上的函数。若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能取值只能是()(A)(B)(C)(D)三、解答题(本大题共有5题,满分76分)17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为,底面圆心为,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设,、是底面半径,且BOPMAA1A,为线段的中点,如图,求异面直线与所成的角的大小。18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数,函数。(1)若为偶函数,求的值;(2)若,求方程在区间上的解。19.(本题满分14分,第1小题满分6分,第2小题满分8分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时。某地上班族中的成员仅以自驾或公交方式通勤。分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟)而公交群体的人均通勤时间不受影响,恒为40分钟。试根据上述分析结果回答下列问题:(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义。20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)设常数,在平面直角坐标系中,已知点,直线:,曲线:(,),与轴交于点,与交于点。、分别是曲线与线段上的动点。(1)用表示点到点的距离;(2)设,,线段的中点在直线上,求的面积;(3)设,是否存在以、为邻边的矩形,使得点在上?若存在,求点的坐标;若不存在,说明理由。21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列,若无穷数列满足:对任意,都有,则称与“接近”。(1)设是首项为1,公比为的等比数列,,。判断数列是否与接近,并说明理由;(2)设数列的前四项为:,,,,是一个与接近的数列,记集合,求中元素的个数;(3)已知是公差为的等差数列。若存在数列满足:与接近,且在,,…,中至少有100个为正数,求的取值范围。2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群