2021年浙江省高考数学(原卷版).doc本文件免费下载 【共7页】

2021年浙江省高考数学(原卷版).doc
2021年浙江省高考数学(原卷版).doc
2021年浙江省高考数学(原卷版).doc
2021年普通高等学校招生全国统一考试(浙江卷)数学一、选择题1.设集合{|1}Axx,{|12}Bxx,则AB()A.{|1}xxB.{|1}xxC.{|11}xxD.{|12}xx答案:2.已知aR,(1)3aiii(i为虚数单位),则a()A.1B.1C.3D.33.已知非零向量a,b,c,则“acbc”是“ab”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.32B.3C.322D.325.若实数x,y满足约束条件1002310xxyxy,则12zxy的最小值是()A.2B.32C.12D.1106.如图,已知正方体1111ABCDABCD,M,N分别是1AD,1DB的中点,则()A.直线1AD与直线1DB垂直,直线//MN平面ABCDB.直线1AD与直线1DB平行,直线MN平面11BDDBC.直线1AD与直线1DB相交,直线//MN平面ABCDD.直线1AD与直线1DB异面,直线MN平面11BDDB7.已知函数21()4fxx,()singxx,则图象为如图的函数可能是()A.1()()4yfxgxB.1()()4yfxgxC.()()yfxgxD.()()gxyfx8.已知,,是互不相同的锐角,则在sincos,sincos,sincos三个值中,大于12的个数的最大值是()A.0B.1C.2D.39.已知,abR,0ab,函数2()()fxaxbxR,若()fst,()fs,()fst成等比数列,则平面上点(,)st的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线10.已知数列{}na满足11a,1()1nnnaanNa,记数列{}na的前n项和为nS,则()A.100132SB.10034SC.100942SD.100952S二、填空题11.我国古代数学家赵爽用弦图给出了勾股定理的证明,弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示),若直角三角形直角边的长分别为3,4,记大正方形的面积为1S,小正方形的面积为2S,则12SS.12.已知aR,函数24,2()|3|,2xxfxxax,若((6))3ff,则a.13.已知多项式34431234(1)(1)xxxaxaxaxa,则1a;234aaa.14.在ABC中,60B,2AB,M是BC的中点,23AM,则AC;cosMAC.15.袋中有4个红球,m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则mn,()E.16.已知椭圆22221(0)xyabab,焦点1(,0)Fc,2(,0)Fc(0c).若过1F的直线和圆2221()2xcyc相切,与椭圆的第一象限交于点P,且2PFx轴,则该直线的斜率是;椭圆的离心率是_________.17.已知平面向量a,b,(0)cc满足1a,2b,0ab,()0abc,记平面向量d在a,b方向上的投影分别为x,y,da在c方向上的投影为z,则222xyz的最小值是.18.记函数()sincos()fxxxxR.(1)求函数2[()]2yfx的最小正周期;(2)求函数()()4yfxfx在[0,]2上的最大值.19.如图,在四棱锥PABCD中,底面ABCD是平行四边形,120ABC,1AB,4BC,15PA,M,N分别为BC,PC的中点,PDDC,PMMD.(1)证明:ABPM.(2)求直线AN与平面PDM所成角的正弦值.20.已知数列{}na的前n项和为nS,194a,且*1439()nnSSnN.(1)求数列{}na的通项公式.(2)设数列{}nb满足*3(4)0()nnbnanN,记{}nb的前n项和为nT,若nnTb对任意*nN恒成立,求实数的取值范围.21.如图,已知F是抛物线22(0)ypxp的焦点,M是抛物线的准线与x轴的交点,且||2MF.(1)求抛物线的方程.(2)设过点F的直线交抛物线于A,B两点,若斜率为2的直线l与直线MA,MB,AB,x轴依次交于点P,Q,R,N,且满足2||||||RNPNQN,求直线l在x轴上截距的取值范围.22.已知函数2()(1,)xfxabxeaxR.(1)讨论()yfx的单调性;(2)若对于任意实数22be,()fx均有两个不同零点,求实数a的取值范围;(3)若ae,证明:对于任意实数4be,()fx有两个零点1x,2x(12xx),且2212ln2bbexxeb.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷).pdf
免费
0下载
2003年江苏高考数学真题及答案.doc
2003年江苏高考数学真题及答案.doc
免费
10下载
专题35不等式第四缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题35不等式第四缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
9下载
2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
高中2024版考评特训卷·数学·文科【统考版】点点练 30.docx
高中2024版考评特训卷·数学·文科【统考版】点点练 30.docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第6讲第3课时 综合问题(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第6讲第3课时 综合问题(含解析).docx
免费
0下载
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2024年新高考数学复习资料热点2-4 导数的切线问题(6题型+满分技巧+限时检测)(原卷版).docx
2024年新高考数学复习资料热点2-4 导数的切线问题(6题型+满分技巧+限时检测)(原卷版).docx
免费
0下载
1995年广西高考文科数学真题及答案.doc
1995年广西高考文科数学真题及答案.doc
免费
7下载
2021年高考数学试卷(上海)(秋考)(解析卷).pdf
2021年高考数学试卷(上海)(秋考)(解析卷).pdf
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】点点练 2.docx
高中2024版考评特训卷·数学·文科【统考版】点点练 2.docx
免费
0下载
1992年重庆高考理科数学真题及答案.doc
1992年重庆高考理科数学真题及答案.doc
免费
28下载
2014年上海市浦东新区高考数学一模试卷(文科).doc
2014年上海市浦东新区高考数学一模试卷(文科).doc
免费
0下载
高中数学·选择性必修·第三册·(RJ-A版)课时作业WORD  课时作业(十一).docx
高中数学·选择性必修·第三册·(RJ-A版)课时作业WORD 课时作业(十一).docx
免费
15下载
2024年高考数学试卷(理)(全国甲卷)(解析卷) (5).docx
2024年高考数学试卷(理)(全国甲卷)(解析卷) (5).docx
免费
0下载
高中2022·微专题·小练习·数学【新高考】专练41.docx
高中2022·微专题·小练习·数学【新高考】专练41.docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练57.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练57.docx
免费
23下载
江西省吉安市青原区双校联盟2022-2023学年高一下学期期末考试数学试题.pdf
江西省吉安市青原区双校联盟2022-2023学年高一下学期期末考试数学试题.pdf
免费
8下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群