2019年上海高考数学真题(解析版).doc本文件免费下载 【共18页】

2019年上海高考数学真题(解析版).doc
2019年上海高考数学真题(解析版).doc
2019年上海高考数学真题(解析版).doc
2019年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分).1.(4分)已知集合A=(﹣∞,3),B=(2,+∞),则A∩B=(2,3).【答案】见试题解答内容【分析】根据交集的概念可得.【解答】解:根据交集的概念可得A∩B=(2,3).故答案为:(2,3).【点评】本题考查了交集及其运算,属基础题.2.(4分)已知z∈C,且满足=i,求z=5﹣i.【答案】见试题解答内容【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由=i,得z﹣5=,即z=5+=5﹣i.故答案为:5﹣i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.3.(4分)已知向量=(1,0,2),=(2,1,0),则与的夹角为.【答案】.【分析】直接利用向量的夹角公式求出结果.【解答】解:向量=(1,0,2),=(2,1,0),则,,所以:cos=,故:与的夹角为.故答案为:.【点评】本题考查的知识要点:向量的夹角公式的应用,主要考查学生的运算能力和转换能力,属于小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com基础题型.4.(4分)已知二项式(2x+1)5,则展开式中含x2项的系数为40.【答案】见试题解答内容【分析】先求得二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得含x2项的系数值.【解答】解:二项式(2x+1)5的展开式的通项公式为Tr+1=C5r•25﹣r•x5﹣r,令5﹣r=2,求得r=3,可得展开式中含x2项的系数值为C53•22=40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.5.(4分)已知x,y满足,则z=2x﹣3y的最小值为﹣6.【答案】见试题解答内容【分析】画出不等式组表示的平面区域,由目标函数的几何意义,结合平移直线,可得所求最小值.【解答】解:作出不等式组表示的平面区域,由z=2x﹣3y即y=,表示直线在y轴上的截距的相反数的倍,平移直线2x﹣3y=0,当经过点(0,2)时,z=2x﹣3y取得最小值﹣6,故答案为:﹣6.【点评】本题考查线性规划的运用,考查平移法求最值的方法,数形结合思想,考查运算能力,属于基础题.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(4分)已知函数f(x)周期为1,且当0<x≤1时,f(x)=log2x,则f()=﹣1.【答案】见试题解答内容【分析】由题意知函数f(x)周期为1,所以化简f()再代入即可.【解答】解:因为函数f(x)周期为1,所以f()=f(),因为当0<x≤1时,f(x)=log2x,所以f()=﹣1,故答案为:﹣1.【点评】本题考查函数的周期性,属于简单题.7.(5分)若x,y∈R+,且+2y=3,则的最大值为.【答案】见试题解答内容【分析】根据基本不等式可得.【解答】解:3=+2y≥2,∴≤()2=(当且仅当x=,y=时,取得等号);故答案为:【点评】本题考查了基本不等式及其应用,属基础题.8.(5分)已知数列{an}前n项和为Sn,且满足Sn+an=2,则S5=.【答案】见试题解答内容【分析】由已知数列递推式可得数列{an}是等比数列,且,再由等比数列的前n项和公式求解.【解答】解:由Sn+an=2,①得2a1=2,即a1=1,且Sn﹣1+an﹣1=2(n≥2),②①﹣②得:(n≥2).∴数列{an}是等比数列,且.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴.故答案为:.【点评】本题考查数列递推式,考查等比关系的确定,训练了等比数列前n项和的求法,是中档题.9.(5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A,B,A在B上方,M为抛物线上一点,=λ+(λ﹣2),则λ=3.【答案】见试题解答内容【分析】直接利用直线和抛物线的位置关系的应用求出点的坐标,进一步利用向量的运算求出结果.【解答】解:过y2=4x的焦点F并垂直于x轴的直线分别与y2=4x交于A,B,A在B上方,依题意:得到:A(1,2)B(1,﹣2),设点M(x,y),所以:M为抛物线上一点,=λ+(λ﹣2),则:(x,y)=λ(1,2)+(λ﹣2)(1,﹣2)=(2λ﹣2,4),...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
免费
0下载
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
免费
0下载
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
免费
1下载
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
17下载
2014年天津市高考数学试卷(理科)往年高考真题.doc
2014年天津市高考数学试卷(理科)往年高考真题.doc
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 26.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 26.docx
免费
4下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练19.docx
高中2024版考评特训卷·数学【新教材】考点练19.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练47.docx
2022·微专题·小练习·数学【新高考】专练47.docx
免费
8下载
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
免费
0下载
2010年高考数学真题(文科)(新课标)(解析版).doc
2010年高考数学真题(文科)(新课标)(解析版).doc
免费
8下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
免费
3下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群