小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06相似三角形的性质(基础)【目标导向】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【知识点精讲梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2.相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3.相似三角形周长的比等于相似比∽,则由比例性质可得:4.相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABCABCBCADkBCkADSkSBCADBCAD△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用1.测量高度小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.要点诠释:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺=图上距离/实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4.仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【精讲例题】类型一、相似三角形的性质1.(上海中考)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【答案与解析】证明:(1) 四边形ABCD是平行四边形,∴BO=BD, OE=OB,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴OE=BD,∴∠BED=90°,∴DE⊥BE;(2) OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE, OB=OE,∴∠DBE=∠CDE, ∠BED=∠BED,∴△BDE∽△DCE,∴,∴BD•CE=CD•DE.【总结升华】本题综合性较强,考查了相似三角形、直角三角形以及平行四边形相关知识,而熟记定理是解题的关键.举一反三【变式】(铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:1【答案】B.提示: 四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA, DE:EC=3:1,∴DE:DC=1=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.2.(本溪)如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【思路点拨】根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.【答案】3或.【解析】解: △DCE∽△ABC,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴或即或解得,CE=3或CE=故答案为:3或.【总结升华】本题考查相似三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.举一反三:【变式】有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2.∴△ABC∽△A1B1C1∽△A2B2C2且,,∴,∴.类型二、相似三角形的应用3.如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽),你有什么方法?小...