2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题.pptx本文件免费下载 【共55页】

2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题.pptx
2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题.pptx
2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题.pptx
板块一函数与导数创新点1以高等数学知识为背景的导数问题高考定位1.导数解答题与高等数学知识交汇命题,考查考生的知识迁移能力、现场学习能力与现场运用能力,逐渐成为命题的热点,难度较大,一般作为压轴题出现;2.常见的高等数学知识除了前面学习过的泰勒公式与洛必达法则、还有拉格朗日中值定理、罗尔中值定理、柯西中值定理、伯努利不等式、微积分、帕德近似等.精准强化练题型一拉格朗日中值定理、罗尔中值定理、柯西中值定理题型二帕德近似题型三微积分、洛必达法则题型突破例1题型一拉格朗日中值定理、罗尔中值定理、柯西中值定理(2024·济宁模拟)已知函数f(x)=lnx-12ax2+12(a∈R).(1)讨论函数f(x)的单调性;函数f(x)的定义域为(0,+∞),f′(x)=1x-ax=1-ax2x,①若a≤0,f′(x)>0恒成立,f(x)在(0,+∞)上单调递增.②若a>0,x∈0,1a时,f′(x)>0,f(x)单调递增;x∈1a,+∞时,f′(x)<0,f(x)单调递减.综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在0,1a上单调递增,在1a,+∞上单调递减.(2)若0<x1<x2,证明:对任意a∈(0,+∞),存在唯一的实数ξ∈(x1,x2),使得f′(ξ)=f(x2)-f(x1)x2-x1成立;令F(x)=f′(x)-f(x2)-f(x1)x2-x1(x>0),则F(x)=1x-ax-lnx2-12ax22-lnx1+12ax21x2-x1=1x-ax-lnx2-lnx1x2-x1+12a(x2+x1),因为a>0,所以F(x)=1x-ax-lnx2-lnx1x2-x1+12a(x2+x1)在区间(x1,x2)上单调递减.F(x1)=1x1-ax1-lnx2-lnx1x2-x1+12a(x2+x1)=1x1-lnx2-lnx1x2-x1+12a(x2-x1)=1x2-x1x2x1-1-lnx2x1+12a(x2-x1).令g(t)=t-1-lnt,t>0,则g′(t)=1-1t=t-1t,所以t∈(0,1)时,g′(t)<0,g(t)单调递减,t∈(1,+∞)时,g′(t)>0,g(t)单调递增,所以g(t)min=g(1)=0,又0<x1<x2,所以x2x1>1,所以gx2x1=x2x1-1-lnx2x1>0恒成立,又因为a>0,x2-x1>0,所以F(x1)>0.同理可得,F(x2)=1x2-x11-x1x2-lnx2x1+12a(x1-x2),由t-1-lnt≥0(t=1时等号成立)得,1t-1-ln1t≥0,即1-1t-lnt≤0(t=1时等号成立),又0<x1<x2,所以0<x1x2<1,所以1-x1x2-lnx2x1<0恒成立,又因为a>0,x1-x2<0,x2-x1>0,所以F(x2)<0,所以区间(x1,x2)上存在唯一实数ξ,使得F(ξ)=0,所以对任意a∈(0,+∞),存在唯一的实数ξ∈(x1,x2),使得f′(ξ)=f(x2)-f(x1)x2-x1成立.(3)设an=2n+1n2,n∈N*,数列{an}的前n项和为Sn.证明:Sn>2ln(n+1).当a=1时,由(1)可得,f(x)=lnx-12x2+12在(1,+∞)上单调递减.所以x>1时,f(x)<f(1)=0,即lnx-12x2+12<0.令x=n+1n,n∈N*,则lnn+1n-12n+1n2+12<0,即n+1n2-1>2ln(n+1)-2lnn,即2n+1n2>2ln(n+1)-2lnn,令bn=2ln(n+1)-2lnn,n∈N*,则an>bn,所以a1+a2+a3+…+an>b1+b2+b3+…+bn=2ln2-2ln1+2ln3-2ln2+…+2ln(n+1)-2lnn=2ln(n+1),所以Sn>2ln(n+1).规律方法1.本题第二问实际上是拉格朗日中值定理,其内容如下若函数f(x)满足如下条件:(1)f(x)在闭区间[a,b]上连续;(2)f(x)在开区间(a,b)内可导.则在(a,b)内至少存在一点ξ,使得f′(ξ)=f(b)-f(a)b-a.2.解决以拉格朗日中值定理为背景的问题的一般步骤(1)研究f(x)的单调性;(2)自定义x1,x2的大小,并判断f(x1)、f(x2)的大小,去掉分母或绝对值;(3)构造新函数F(x),转化为新函数的单调性或最值解决问题.罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,其他两个分别为:拉格朗日中值定理、柯西中值定理.罗尔定理描述如下:如果R上的函数f(x)满足以下条件:①在闭区间[a,b]上连续,②在开区间(a,b)内可导,③f(a)=f(b),则至少存在一个ξ∈(a,b),使得f′(ξ)=0.据此,解决以下问题:(1)证明方程4ax3+3bx2+2cx-(a+b+c)=0在(0,1)内至少有一个实根,其中a,b,c∈R;训练1设F(x)=ax4+bx3+cx2-(a+b+c)x,x∈[0,1],则F′(x)=4ax3+3bx2+2cx-(a+b+c)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中2024版考评特训卷·数学【新教材】考点练66.docx
高中2024版考评特训卷·数学【新教材】考点练66.docx
免费
0下载
2009年浙江省高考数学【理】(含解析版).doc
2009年浙江省高考数学【理】(含解析版).doc
免费
4下载
2014年高考数学试卷(理)(辽宁)(解析卷).doc
2014年高考数学试卷(理)(辽宁)(解析卷).doc
免费
0下载
2010年全国统一高考数学试卷(理科)(新课标)(原卷版).doc
2010年全国统一高考数学试卷(理科)(新课标)(原卷版).doc
免费
4下载
2024年新高考数学复习资料第03讲 复数(讲义)(原卷版).docx
2024年新高考数学复习资料第03讲 复数(讲义)(原卷版).docx
免费
0下载
2024年新高考数学复习资料第15练 导数与函数的单调性(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第15练 导数与函数的单调性(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】点点练 30.docx
高中2024版考评特训卷·数学·文科【统考版】点点练 30.docx
免费
0下载
2024年新高考数学复习资料第16讲 存在与任意问题(微专题)(解析版).docx
2024年新高考数学复习资料第16讲 存在与任意问题(微专题)(解析版).docx
免费
0下载
高考数学复习  考点巩固卷21 统计与统计案例(七大考点)(解析版).docx
高考数学复习 考点巩固卷21 统计与统计案例(七大考点)(解析版).docx
免费
0下载
2024版《微专题》·数学(文)·统考版专练 20.docx
2024版《微专题》·数学(文)·统考版专练 20.docx
免费
8下载
2022年高考数学试卷(北京)(空白卷).pdf
2022年高考数学试卷(北京)(空白卷).pdf
免费
1下载
2022年高考数学真题(文科)(全国甲卷)(解析版).docx
2022年高考数学真题(文科)(全国甲卷)(解析版).docx
免费
27下载
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (2).pdf
免费
0下载
高中2024版《微专题》·数学(文)·统考版专练 30.docx
高中2024版《微专题》·数学(文)·统考版专练 30.docx
免费
0下载
2004年河南高考理科数学真题及答案.doc
2004年河南高考理科数学真题及答案.doc
免费
2下载
2002年河北高考理科数学真题及答案.doc
2002年河北高考理科数学真题及答案.doc
免费
24下载
2004年高考数学真题(理科)(安徽自主命题).doc
2004年高考数学真题(理科)(安徽自主命题).doc
免费
6下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 26.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 26.docx
免费
4下载
专题02 函数概念与基本初等函数(解析版).docx
专题02 函数概念与基本初等函数(解析版).docx
免费
0下载
2024年新高考数学复习资料数学(二)-2024年高考考前20天终极冲刺攻略(新高考新题型专用).docx
2024年新高考数学复习资料数学(二)-2024年高考考前20天终极冲刺攻略(新高考新题型专用).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料