2025年新高考数学复习资料提优点1 隐零点问题.pptx本文件免费下载 【共25页】

2025年新高考数学复习资料提优点1 隐零点问题.pptx
2025年新高考数学复习资料提优点1 隐零点问题.pptx
2025年新高考数学复习资料提优点1 隐零点问题.pptx
板块一函数与导数提优点1隐零点问题知识拓展导函数的零点在很多时候是无法直接求解出来的,我们称之为“隐零点”,即能确定其存在,但又无法用显性的代数进行表达.这类问题的解题思路是对函数的零点设而不求,利用整体代换思想,再结合题目条件解决问题.精准强化练类型一不含参函数的隐零点问题类型二含参函数的隐零点问题类型突破(2024·长沙调研节选)已知函数f(x)=xlnx-mx(m∈R).当x>1时,不等式f(x)+lnx+3>0恒成立,求整数m的最大值.例1由题意,知xlnx-mx+lnx+3>0对任意x>1恒成立,可知m<lnx+lnx+3x对任意x>1恒成立.设函数g(x)=lnx+lnx+3x(x>1),只需m<g(x)min.类型一不含参函数的隐零点问题对函数g(x)求导,得g′(x)=1x+1-(lnx+3)x2=x-lnx-2x2.设函数h(x)=x-lnx-2(x>1),对函数h(x)求导,得h′(x)=1-1x=x-1x>0,所以函数h(x)在(1,+∞)上单调递增.又h(3)=1-ln3<0,h72=32-ln72>0,所以存在x0∈3,72,使h(x0)=0,即x0-lnx0-2=0,所以当x∈(1,x0)时,h(x)<0,g′(x)<0,函数g(x)单调递减;当x∈(x0,+∞)时,h(x)>0,g′(x)>0,函数g(x)单调递增,所以g(x)min=g(x0)=lnx0+lnx0+3x0=x0-2+x0-2+3x0=x0+1x0-1,所以m<x0+1x0-1.又x0∈3,72,所以x0+1x0-1∈213,21114,所以整数m的最大值为2.已知不含参函数f(x),导函数方程f′(x)=0的根存在,却无法求出,利用零点存在定理判断零点存在,设方程f′(x)=0的根为x0,则①有关系式f′(x0)=0成立,②注意确定x0的范围.规律方法(2024·济南模拟)已知函数f(x)=lnx-ax+1,g(x)=x(ex-x).(1)若直线y=2x与函数f(x)的图象相切,求实数a的值;训练1设切点坐标为(x0,f(x0)),由f′(x)=1x-a,得f′(x0)=1x0-a,所以切线方程为y-(lnx0-ax0+1)=1x0-a(x-x0),即y=1x0-ax+lnx0.因为直线y=2x与函数f(x)的图象相切,所以1x0-a=2,lnx0=0,解得a=-1.(2)当a=-1时,求证:f(x)≤g(x)+x2.当a=-1时,f(x)=lnx+x+1,令F(x)=g(x)-f(x)+x2=xex-lnx-x-1(x>0),则F′(x)=(x+1)ex-1x-1=x+1x(xex-1),令G(x)=xex-1(x>0),则G′(x)=(x+1)ex>0,所以函数G(x)在区间(0,+∞)上单调递增,又G(0)=-1<0,G(1)=e-1>0,所以函数G(x)存在唯一的零点x0∈(0,1),且当x∈(0,x0)时,G(x)<0,F′(x)<0;当x∈(x0,+∞)时,G(x)>0,F′(x)>0.所以函数F(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,故F(x)min=F(x0)=x0ex0-lnx0-x0-1,由G(x0)=0得x0ex0=1,两边取对数得lnx0+x0=0,故F(x0)=0,所以g(x)-f(x)+x2≥0,即f(x)≤g(x)+x2.例2已知函数f(x)=2exsinx-ax.若0<a<6,试讨论f(x)在(0,π)上的零点个数.(eπ2≈4.8) f(x)=2exsinx-ax,∴f′(x)=2ex(sinx+cosx)-a,令h(x)=f′(x),则h′(x)=4excosx.∴当x∈0,π2时,h′(x)>0;当x∈π2,π时,h′(x)<0,∴h(x)在0,π2上单调递增,在π2,π上单调递减,类型二含参函数的隐零点问题即f′(x)在0,π2上单调递增,在π2,π上单调递减.f′(0)=2-a,f′π2=2eπ2-a>0,f′(π)=-2eπ-a<0.①当2-a≥0,即0<a≤2时,f′(0)≥0,∴∃x0∈π2,π,使得f′(x0)=0,∴当x∈(0,x0)时,f′(x)>0;当x∈(x0,π)时,f′(x)<0,∴f(x)在(0,x0)上单调递增,在(x0,π)上单调递减. f(0)=0,∴f(x0)>0,又f(π)=-aπ<0,∴由零点存在定理可得,此时f(x)在(0,π)上仅有一个零点;②若2<a<6时,f′(0)=2-a<0,又 f′(x)在0,π2上单调递增,在π2,π上单调递减,∴∃x1∈0,π2,x2∈π2,π,使得f′(x1)=0,f′(x2)=0,且当x∈(0,x1)∪(x2,π)时,f′(x)<0;当x∈(x1,x2)时,f′(x)>0.∴f(x)在(0,x1)和(x2,π)上单调递减,在(x1,x2)上单调...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中2024版考评特训卷·数学【新教材】滚动过关检测三.docx
高中2024版考评特训卷·数学【新教材】滚动过关检测三.docx
免费
0下载
2013年高考数学试卷(理)(陕西)(空白卷).doc
2013年高考数学试卷(理)(陕西)(空白卷).doc
免费
0下载
2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
2024年新高考数学复习资料专题03 导数及其应用-2022年高考真题和模拟题数学分专题训练(教师版含解析).docx
免费
0下载
2013年上海市高考数学试卷(理科)往年高考真题.doc
2013年上海市高考数学试卷(理科)往年高考真题.doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】客观题专练 5.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】客观题专练 5.docx
免费
30下载
2016年北京高考文科数学试题及答案.doc
2016年北京高考文科数学试题及答案.doc
免费
16下载
2024年新高考数学复习资料第05讲 一元二次不等式及其应用(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第05讲 一元二次不等式及其应用(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
1998年福建高考理科数学真题及答案.doc
1998年福建高考理科数学真题及答案.doc
免费
23下载
2007年新疆高考文科数学真题及答案.doc
2007年新疆高考文科数学真题及答案.doc
免费
13下载
高中2023《微专题·小练习》·数学·文科·L-2专练25.docx
高中2023《微专题·小练习》·数学·文科·L-2专练25.docx
免费
0下载
2025年新高考数学复习资料拔高点突破01 函数的综合应用(九大题型)(解析版).docx
2025年新高考数学复习资料拔高点突破01 函数的综合应用(九大题型)(解析版).docx
免费
0下载
2025年新高考数学复习资料微专题19 数列的递推关系.docx
2025年新高考数学复习资料微专题19 数列的递推关系.docx
免费
0下载
2016年广东高考(理科)数学(原卷版).docx
2016年广东高考(理科)数学(原卷版).docx
免费
14下载
2025年新高考数学复习资料第01讲 计数原理(三大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第01讲 计数原理(三大题型)(讲义)(原卷版).docx
免费
0下载
2023年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2023年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2019年高考数学真题(文科)(广东自主命题)(解析版).doc
2019年高考数学真题(文科)(广东自主命题)(解析版).doc
免费
18下载
上海市长宁、金山区2020年高三第一学期期末(一模)学科质量检测数学试卷(word解析版).docx
上海市长宁、金山区2020年高三第一学期期末(一模)学科质量检测数学试卷(word解析版).docx
免费
0下载
2012年高考数学试卷(理)(四川)(解析卷).pdf
2012年高考数学试卷(理)(四川)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料【专项精练】第21课 三角函数的两角和与差-2024年新高考数学分层专项精练(原卷版).docx
2024年新高考数学复习资料【专项精练】第21课 三角函数的两角和与差-2024年新高考数学分层专项精练(原卷版).docx
免费
0下载
2005年江苏高考数学真题及答案.doc
2005年江苏高考数学真题及答案.doc
免费
1下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群