板块一函数与导数微专题3抽象函数与嵌套函数高考定位1.以选择题、填空题的形式考查抽象函数性质的应用,难度中档偏上;2.以选择题、填空题的形式考查嵌套函数零点的个数或由零点的个数求参数等,难度中档或偏上.【真题体验】1.(2020·新高考Ⅰ卷)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]√因为函数f(x)为定义在R上的奇函数,所以f(0)=0.又f(x)在(-∞,0)上单调递减,且f(2)=0,画出函数f(x)的大致图象如图(1)所示,则函数f(x-1)的大致图象如图(2)所示.当x≤0时,要满足xf(x-1)≥0,则f(x-1)≤0,得-1≤x≤0.当x>0时,要满足xf(x-1)≥0,则f(x-1)≥0,得1≤x≤3.故满足xf(x-1)≥0的x的取值范围是[-1,0]∪[1,3].故选D.√2.(多选)(2022·新高考Ⅰ卷)已知函数f(x)及其导函数f′(x)的定义域均为R,记g(x)=f′(x).若f32-2x,g(2+x)均为偶函数,则A.f(0)=0B.g-12=0C.f(-1)=f(4)D.g(-1)=g(2)√法一(转化法)因为f32-2x,g(2+x)均为偶函数,所以f32-2x=f32+2x,即f32-x=f32+x,g(2+x)=g(2-x),所以f(3-x)=f(x),g(4-x)=g(x),则f(-1)=f(4),故C正确;函数f(x),g(x)的图象分别关于直线x=32,x=2对称,又g(x)=f′(x),所以g(32)=0,g(3-x)=-g(x),所以g(4-x)=g(x)=-g(3-x),所以g(x+4)=-g(x+3),所以g(x+2)=-g(x+1),所以g(x+1)=-g(x),所以g(x+2)=g(x).所以g-12=g32=0,g(-1)=g(1)=-g(2),故B正确,D错误;若函数f(x)满足题设条件,则函数f(x)+C(C为常数)也满足题设条件,所以无法确定f(0)的函数值,故A错误.法二(构造函数法)令f(x)=1-sinπx,则f32-2x=1+cos2πx,则g(x)=f′(x)=-πcosπx,g(x+2)=-πcos(2π+πx)=-πcosπx,满足题设条件,可得只有选项B,C正确.3.(多选)(2023·新高考Ⅰ卷)已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点√取x=y=0,则f(0)=0+0=0,故A正确;取x=y=1,则f(1)=f(1)+f(1),所以f(1)=0,故B正确;取x=y=-1,则f(1)=f(-1)+f(-1),所以f(-1)=0;取y=-1,则f(-x)=f(x)+x2f(-1),所以f(-x)=f(x),所以函数f(x)为偶函数,故C正确;由于f(0)=0,且函数f(x)为偶函数,所以函数f(x)的图象关于y轴对称,所以x=0可能为函数f(x)的极小值点,也可能为函数f(x)的极大值点,也可能不是函数f(x)的极值点,故D不正确.综上,选ABC.√√√由y=g(x)的图象关于直线x=2对称,可得g(2+x)=g(2-x).在f(x)+g(2-x)=5中,用-x替换x,可得f(-x)+g(2+x)=5,可得f(-x)=f(x).在g(x)-f(x-4)=7中,用2-x替换x,得g(2-x)=f(-x-2)+7,代入f(x)+g(2-x)=5中,得f(x)+f(-x-2)=-2,可得f(x)+f(x+2)=-2,所以f(x+2)+f(x+4)=-2所以f(x+4)=f(x)4.(2022·全国乙卷)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图象关于直线x=2对称,g(2)=4,则∑22k=1f(k)=A.-21B.-22C.-23D.-24由f(x)+g(2-x)=5可得f(0)+g(2)=5,又g(2)=4,所以可得f(0)=1,又f(x)+f(x+2)=-2,所以f(0)+f(2)=-2,f(-1)+f(1)=-2,得f(2)=-3,f(1)=f(-1)=-1,又f(3)=f(-1)=-1,f(4)=f(0)=1,所以∑22k=1f(k)=6f(1)+6f(2)+5f(3)+5f(4)=6×(-1)+6×(-3)+5×(-1)+5×1=-24.精准强化练热点一抽象函数热点二嵌套函数热点突破热点一抽象函数研究抽象函数性质的方法(1)用赋值法研究抽象函数.(2)利用数形结合法研究抽象函数.(3)利用函数性质之间的关系推理论证研究抽象函数.设定义在R上的函数f(x)满足f(0)=1,且对任意x,y∈R都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(1)=________;f(2025)=________.例12...