2025年新高考数学复习资料微专题6 切线与公切线问题.pptx本文件免费下载 【共49页】

2025年新高考数学复习资料微专题6 切线与公切线问题.pptx
2025年新高考数学复习资料微专题6 切线与公切线问题.pptx
2025年新高考数学复习资料微专题6 切线与公切线问题.pptx
板块一函数与导数微专题6切线与公切线问题高考定位曲线的切线与公切线问题是高考考查的热点,一般单独考查,难度较小,也可与函数的单调性、极值、最值综合考查,难度较大.【真题体验】√1.(2024·全国甲卷)设函数f(x)=ex+2sinx1+x2,则曲线y=f(x)在点(0,1)处的切线与两坐标轴所围成的三角形的面积为A.16B.13C.12D.23f′(x)=(ex+2cosx)(1+x2)-(ex+2sinx)·2x(1+x2)2,所以f′(0)=3,所以曲线y=f(x)在点(0,1)处的切线方程为y-1=3(x-0),即3x-y+1=0,切线与两坐标轴的交点分别为(0,1),-13,0,所以切线与两坐标轴所围成的三角形的面积为12×1×13=16,故选A.2.(2024·新高考Ⅰ卷)若曲线y=ex+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=________.ln2由题意,令f(x)=ex+x,则f′(x)=ex+1,所以f′(0)=2,所以曲线y=ex+x在点(0,1)处的切线方程为y=2x+1.令g(x)=ln(x+1)+a,则g′(x)=1x+1,设直线y=2x+1与曲线y=g(x)相切于点(x0,y0),则1x0+1=2,得x0=-12,则y0=2x0+1=0,所以0=ln-12+1+a,所以a=ln2.3.(2022·新高考Ⅰ卷)若曲线y=(x+a)ex有两条过坐标原点的切线,则a的取值范围是______________________.(-∞,-4)∪(0,+∞)因为y=(x+a)ex,所以y′=(x+a+1)ex.设切点为A(x0,(x0+a)ex0),O为坐标原点,依题意得,切线斜率kOA=y′|x=x0=(x0+a+1)ex0=(x0+a)ex0x0,化简得x20+ax0-a=0.因为曲线y=(x+a)ex有两条过坐标原点的切线,所以关于x0的方程x20+ax0-a=0有两个不同的根,所以Δ=a2+4a>0,解得a<-4或a>0,所以a的取值范围是(-∞,-4)∪(0,+∞).4.(2022·新高考Ⅱ卷)曲线y=ln|x|过坐标原点的两条切线的方程为________,___________.y=1exy=-1ex先求当x>0时,曲线y=lnx过原点的切线方程,设切点为(x0,y0),则由y′=1x,得切线斜率为1x0,又切线的斜率为y0x0,所以1x0=y0x0,解得y0=1,代入y=lnx,得x0=e,所以切线斜率为1e,切线方程为y=1ex.同理可求得当x<0时的切线方程为y=-1ex.综上可知,两条切线方程为y=1ex,y=-1ex.精准强化练热点一曲线的切线热点二曲线的公切线热点突破热点一曲线的切线导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.例1√由y=ex-2+1,可得y′=ex-2,设切点坐标为(t,et-2+1),可得切线方程为y-(et-2+1)=et-2(x-t),把原点(0,0)代入切线方程,可得0-(et-2+1)=et-2(0-t),即(t-1)et-2=1,解得t=2,所以切线方程为y-(e0+1)=e0(x-2),即y=x.(1)过坐标原点作曲线y=ex-2+1的切线,则切线方程为A.y=xB.y=2xC.y=1e2xD.y=ex√(2)(2024·兰州调研)已知过点(0,-1)且与曲线f(x)=-x3+3a2x2-6x(x>0)相切的直线有且仅有两条,则实数a的取值范围是A.(2,+∞)B.(0,+∞)C.(-∞,2)D.(-∞,0)由曲线f(x)=-x3+3a2x2-6x(x>0),可设切点坐标为t,-t3+3a2t2-6t(t>0),易知切线的斜率存在,由f′(x)=-3x2+3ax-6,可得切线的斜率k=-3t2+3at-6,从而切线方程为y=-t3+3a2t2-6t+(-3t2+3at-6)(x-t),又切线过点(0,-1),所以-1=-t3+3a2t2-6t+(-3t2+3at-6)(0-t),整理得4t3-3at2+2=0,由题意可知方程有两个不相等的正实数解.令h(t)=4t3-3at2+2,则函数h(t)在(0,+∞)上有两个不同的零点,令h′(t)=12t2-6at=0,可得t=0或t=a2.又h(0)=2,结合h(t)的图象(如图)特征可知,要满足题意,需使a>0且ha2=-14a3+2<0,从而可得a>2.所以实数a的取值范围是(2,+∞).故选A.求过某点的切线方程时(不论这个点在不在曲线上,这个点都不一定是切点),应先设切点的坐标,再根据切点的“一拖三”(切点的横坐标与斜率相关、切点在切线上、切点在曲线上)求切线方程.规律方法(1)已知曲线y=xlnx+ae-x在点x=1处的切线方程为2x-y+b=0,则b=A.-1B.-2C.-3D.0训练1√由题意可得y′=lnx+1-ae-x,根据导...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2013年高考数学试卷(文)(天津)(空白卷).pdf
2013年高考数学试卷(文)(天津)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题11 函数的奇偶性、对称性和周期性综合(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题11 函数的奇偶性、对称性和周期性综合(含2021-2023高考真题)(解析版).docx
免费
0下载
2016年高考数学试卷(理)(新课标Ⅰ)(解析卷) (4).pdf
2016年高考数学试卷(理)(新课标Ⅰ)(解析卷) (4).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科主观题专练 (5).doc
二轮专项分层特训卷··高三数学·理科主观题专练 (5).doc
免费
8下载
2017年高考数学试卷(文)(山东)(解析卷).pdf
2017年高考数学试卷(文)(山东)(解析卷).pdf
免费
0下载
2013年高考数学试卷(理)(湖北)(空白卷).pdf
2013年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
1998年广西高考理科数学真题及答案.doc
1998年广西高考理科数学真题及答案.doc
免费
20下载
2009年高考数学试卷(理)(全国卷Ⅱ)(解析卷).pdf
2009年高考数学试卷(理)(全国卷Ⅱ)(解析卷).pdf
免费
0下载
2010年高考数学真题(文科)(湖北自主命题).doc
2010年高考数学真题(文科)(湖北自主命题).doc
免费
5下载
高中2024版考评特训卷·数学·文科【统考版】点点练 11.docx
高中2024版考评特训卷·数学·文科【统考版】点点练 11.docx
免费
0下载
2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题一(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题一(含解析).doc
免费
0下载
2009年高考数学试卷(理)(江西)(解析卷).doc
2009年高考数学试卷(理)(江西)(解析卷).doc
免费
0下载
山东省青岛市莱西市2022-2023学年高二下学期学业水平阶段性检测(三)数学试题.pdf
山东省青岛市莱西市2022-2023学年高二下学期学业水平阶段性检测(三)数学试题.pdf
免费
2下载
2015年高考数学试卷(文)(浙江)(解析卷).pdf
2015年高考数学试卷(文)(浙江)(解析卷).pdf
免费
0下载
2017年高考数学真题(江苏自主命题)(解析版).doc
2017年高考数学真题(江苏自主命题)(解析版).doc
免费
0下载
2009年辽宁高考文科数学试题及答案.doc
2009年辽宁高考文科数学试题及答案.doc
免费
10下载
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(解析版).docx
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(解析版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
免费
0下载
2008年高考数学试卷(文)(四川)(非延考区)(解析卷).doc
2008年高考数学试卷(文)(四川)(非延考区)(解析卷).doc
免费
0下载
2024年新高考数学复习资料专题2.3 幂函数与指、对数函数【九大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料专题2.3 幂函数与指、对数函数【九大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群