小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第02练常用逻辑用语(精练)1.理解充分条件、必要条件、充要条件的意义.2.理解判定定理与充分条件的关系,性质定理与必要条件的关系,理解数学定义与充要条件的关系.3.理解全称量词命题与存在量词命题的意义,能正确对两种命题进行否定.一、单选题1.(2023·北京·高考真题)若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【分析】解法一:由化简得到即可判断;解法二:证明充分性可由得到,代入化简即可,证明必要性可由去分母,再用完全平方公式即可;解法三:证明充分性可由通分后用配凑法得到完全平方公式,再把代入即可,证明必要性可由通分后用配凑法得到完全平方公式,再把代入,解方程即可.【详解】解法一:因为,且,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,即,即,所以.所以“”是“”的充要条件.解法二:充分性:因为,且,所以,所以,所以充分性成立;必要性:因为,且,所以,即,即,所以.所以必要性成立.所以“”是“”的充要条件.解法三:充分性:因为,且,所以,所以充分性成立;必要性:因为,且,所以,所以,所以,所以,所以必要性成立.所以“”是“”的充要条件.故选:C2.(2023·全国·高考真题)设甲:,乙:,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.【详解】当时,例如但,即推不出;当时,,即能推出.综上可知,甲是乙的必要不充分条件.故选:B3.(2023·天津·高考真题)已知,“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【详解】由,则,当时不成立,充分性不成立;由,则,即,显然成立,必要性成立;所以是的必要不充分条件.故选:B4.(2023·全国·高考真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,【详解】方法1,甲:为等差数列,设其首项为,公差为,则,因此为等差数列,则甲是乙的充分条件;反之,乙:为等差数列,即为常数,设为,即,则,有,两式相减得:,即,对也成立,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C正确.方法2,甲:为等差数列,设数列的首项,公差为,即,则,因此为等差数列,即甲是乙的充分条件;反之,乙:为等差数列,即,即,,当时,上两式相减得:,当时,上式成立,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com于是,又为常数,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C5.(2022·天津·高考真题)“为整数”是“为整数”的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要【答案】A【分析】用充分条件、必要条件的定义判断.【详解】由为整数能推出为整数,故“为整数”是“为整数”的充分条件,由,为整数不能推出为整数,故“为整数”是“为整数”的不必要条件,综上所述,“为整数”是“为整数”的充分不必要条件,故选:A.6.(2022·浙江·高考真题)设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【分析】由三角函数的性质结合充分条件、必要条件的定义即可得...