2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题三(含解析).doc本文件免费下载 【共17页】

2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题三(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题三(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题三(含解析).doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com人教A版数学--数列专题三知识点一等差数列通项公式的基本量计算,等比数列通项公式的基本量计算,错位相减法求和,分组(并项)法求和典例1、已知为等差数列,为等比数列,.(1)求和的通项公式;(2)记的前项和为,求证:;(3)对任意的正整数,设求数列的前项和.随堂练习:已知等比数列的公比是的等差中项.等差数列满足.(1)求数列的通项公式;(2)将数列与数列的所有项按照从小到大的顺序排列成一个新的数列,求此新数列的前50项和;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3),求数列的前项和.典例2、在等差数列中,已知,.(1)求数列的通项公式;(2)若数列是首项为1,公比为3的等比数列,求数列的前n项和;(3)记,数列的前n项和为,若对任意的,,都有,求正整数k的最小值.随堂练习:已知数列中,,,,数列的前n项和为Sn.(1)求的通项公式;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)已知,(i)求数列前n项和Tn;(ii)证明:当时,.典例3、已知数列的前项和为,,.(1)求的通项公式;(2)求数列的前项和;(3)若数列,,求前项和.随堂练习:已知等差数列的前项和为,公差为1,且满足.数列是首小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com项为2的等比数列,公比不为1,且、、成等差数列,其前项和为.(1)求数列和的通项公式;(2)若,求正整数的值;(3)记,求数列的前项和.知识点二等差数列通项公式的基本量计算,写出等比数列的通项公式,求等比数列前n项和,分组(并项)法求和典例4、已知数列是等差数列,记为的前n项和,是等比数列,.(1)求;(2)记,求数列的前2n项和.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知公差不为零的等差数列的前项和为,且满足,,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.典例5、已知数列,,,数列为等比数列,满足,且,,成等差数列.(1)求数列和的通项公式;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)记数列满足:,求数列的前项和.随堂练习:已知等差数列的前项和为,数列为正项等比数列,且,.(1)求数列和的通项公式;(2)若设的前项和为,求.典例6、已知等比数列的前n项和为,且满足,数列满足:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,.(1)求数列,的通项公式;(2)设数列的通项,求数列的前n项和.随堂练习:已知正项数列的前n项和为,且.(1)求数列的通项公式;(2)将数列和数列中所有的项,按照从小到大的顺序排列得到一个新数列,求的前50项和.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com人教A版数学--数列专题三答案典例1、答案:(1),;(2)证明见解析;(3).解:(1)设等差数列的公差为,等比数列的公比为q.由,,可得d=1.从而的通项公式为.由,又q≠0,可得,解得q=2,从而的通项公式为.(2)证明:由(Ⅰ)可得,故,,从而,所以.(3)当n为奇数时,,当n为偶数时,,对任意的正整数n,有,和①由①得②由①②得,由于,从而得:.因此,.所以,数列的前2n项和为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:答案:(1),;(2);(3).解:(1)依题有,因为,解得:.数列是等差数列,设其公差为,,解得:.(2)数列与数列都是递增数列,,,,新数列的前50项和为:.(3) ,设,,,两式相减有,∴.∴..典例2、答案:(1)(2)(3)9小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解:(1)设公差为,则,解得,所以;(2)由题意,所以,;(3)由(1),,,相减得,,由,得,令,则,设,则,当时,,当时,,即,当时,,,,,所以当时,,当时,,当时,递减,当时,递增,,,,因此当时,,当时,,所以满足的的最小值是9,即的最大值是9.随...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群