小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com人教A版数学--概率专题一知识点一由递推关系证明等比数列,写出简单离散型随机变量分布列,求离散型随机变量的均值,利用等比数列的通项公式求数列中的项典例1、足球运动被誉为“世界第一运动”.为推广足球运动,某学校成立了足球社团由于报名人数较多,需对报名者进行“点球测试”来决定是否录取,规则如下:(1)下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢进的概率.为加入足球社团,该同学进行了“点球测试”,每次点球是否踢进相互独立,将他在测试中所踢的点球次数记为,求;点球数203030252025进球数101720161314(2)社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地将球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,接到第n次传球的人即为第次触球者,第n次触球者是甲的概率记为.(1)求,,(直接写出结果即可);(2)证明:数列为等比数列.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:雅礼中学是三湘名校,学校每年一届的社团节是雅礼很有特色的学生活动,几十个社团在一个月内先后开展丰富多彩的社团活动,充分体现了雅礼中学为学生终身发展奠基的育人理念.2022年雅礼文学社举办了诗词大会,在选拔赛阶段,共设两轮比赛.第一轮是诗词接龙,第二轮是飞花令.第一轮给每位选手提供5个诗词接龙的题目,选手从中抽取2个题目,主持人说出诗词的上句,若选手正确回答出下句可得10分,若不能正确回答出下可得0分.(1)已知某位选手会5个诗词接龙题目中的3个,求该选手在第一轮得分的数学期望;(2)已知恰有甲乙丙丁四个团队参加飞花令环节的比赛,每一次由四个团队中的一、、、个回答问题,无论答题对错,该团队回答后由其他团队抢答下一问题,且其他团体有相同的机会抢答下一问题.记第次回答的是甲的概率是,若.①求和;②证明:数列为等比数列,并比较第7次回答的是甲和第8次回答的是甲的可能性的大小.典例2、现有甲、乙、丙三个人相互传接球,第一次从甲开始传球,甲随机地把球传给乙、丙中的一人,接球后视为完成第一次传接球;接球者进行第二次传球,随机地传给另外两人中的一人,接球后视为完成第二次传接球;依次类推,假设传接球无失误.(1)设乙接到球的次数为,通过三次传球,求的分布列与期望;(2)设第次传球后,甲接到球的概率为,(i)试证明数列为等比数列;(ii)解释随着传球次数的增多,甲接到球的概率趋近于一个常数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i次答题所得分数的数学期望为.①写出与满足的等量关系式(直接写出结果,不必证明):②若,求i的最小值.典例3、某校班主任利用周末时间对该班级2019年最后一次月考的语文作文分数进行了一次统计,发现分数都位于20﹣55之间,现将所有分数情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)七组,其频率分布直方图如图所示,已知m=2n,[30,35)这组的参加者是12人.(1)根据此频率分布直方图求图中m,n的值,并求该班级这次月考作文分数的中位数;(2)组织者从[35,40)这组的参加者(其中共有5名女学生,其余为男学生)中随机小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com选出1人(为公平起见,把每个人编号,通过号码确定),如果选到男学生,则该学生留在本组,如果选到女生,则该女生交换一个男生到该组中去(已知本班...