2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题七(含解析).doc本文件免费下载 【共17页】

2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题七(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题七(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题七(含解析).doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2024年高考导数复习专题七知识点一利用导数研究不等式恒成立问题,利用导数证明不等式,含参分类讨论求函数的单调区间典例1、已知:函数.(1)当时,讨论函数的单调性;(2)若在上单调递增,求实数的取值范围.随堂练习:已知函数.(1)讨论的单调性;(2)求证:当时,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知函数.(1)讨论函数的单调性;(2)若且,求证:.随堂练习:已知函数.(1)当时,讨论函数的单调性;(2)若且,求证:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例3、已知函数.(1)当时,讨论的单调性;(2)证明:当时,,.随堂练习:已知函数讨论函数的单调性;设,对任意的恒成立,求整数的最大值;求证:当时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点二利用导数研究方程的根,由导数求函数的最值(含参)典例4、已知函数,其中.(1)当时,求的最小值;(2)讨论方程根的个数.随堂练习:已知,.(1)存在满足:,,求的值;(2)当时,讨论的零点个数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例5、已知函数,.(1)当a=2时,求曲线在处的切线方程;(2)讨论关于x的方程的实根个数.典例6、函数,.(1)试讨论的单调性;(2)若恒成立,求实数的集合;(3)当时,判断图象与图象的交点个数,并证明.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2024年高考导数复习专题七答案典例1、答案:(1)单调递增;(2).解:(1)当时,,所以,令,则,当时,,递减;当时,,递增;所以取得最小值,所以在上成立,所以在上递增;(2)因为在上单调递增,所以,恒成立,即,恒成立,令,则,当时,当时,,递减;当时,,递增;所以取得最小值,所以当时,易知,不成立,当a=0时,成立,综上:,所以实数的取值范围.随堂练习:答案:(1)见解析;(2)证明见解析.解:(1)函数,定义域为,所以,当时,,在单调递减;当时,令,则,解得,在单调递增;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,则,解得;在单调递减;综上:当时,在单调递减;当时,在单调递增,在单调递减;(2)要证当时,,只须证:,而,因此,只要证:,设,则,当时,单调递增;当时,单调递减;所以,即;所以当时,.典例2、答案:(1)答案见解析;(2)证明见解析.解:(1)函数的定义域为,.若,则,在上单调递减.若,当时,;当时,;当时,,故在上,单调递减;在上,单调递增.若,当时,;当时,;当时,,故在上,单调递减;在上,单调递增.(2)若且,则.欲证,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com只需证.设函数,则.当时,,函数在上单调递增,所以.设函数,则.设函数,则.当时,,故存在,使得,从而函数在上单调递增;在上单调递减,所以,且,故存在,使得,即当时,,当时,,从而函数在上单调递增;在上单调递减.因为,,所以当时,,所以,,即,.一题多解:(2)另解一若且,则,欲证,只需证.设函数,则.当时,,函数在上单调递增.所以.设函数,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为,所以,所以,又,所以,所以,即原不等式成立.随堂练习:答案:(1)答案见解析;(2)证明见解析.解:(1)函数的定义域为①若时,则,在上单调递减;②若时,当时,当时,;当时,故在上,单调递减;在上,单调递增(2)若且,欲证只需证即证设函数,,则当时,;故函数在上单调递增所以设函数,则设函数,则当时,故存在,使得从而函数在上单调递增;在上单调递减当时,当时,故存在,使得即当时,,当时,从而函数在上单调递增;在上单调递减小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为故当时,所以即典例3、答案:(1)在上单调递增,在上单...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年高考数学真题(理科)(湖北自主命题).doc
2015年高考数学真题(理科)(湖北自主命题).doc
免费
21下载
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
2000年云南高考文科数学真题及答案.doc
2000年云南高考文科数学真题及答案.doc
免费
5下载
2008年高考数学试卷(文)(湖南)(解析卷) .doc
2008年高考数学试卷(文)(湖南)(解析卷) .doc
免费
0下载
2014年上海市宝山区、静安区、杨浦区、青浦区四区联考高考数学二模试卷(文科).doc
2014年上海市宝山区、静安区、杨浦区、青浦区四区联考高考数学二模试卷(文科).doc
免费
0下载
2024年新高考数学复习资料第11讲 对数与对数函数(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第11讲 对数与对数函数(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2010年高考数学试卷(理)(天津)(解析卷) (1).docx
2010年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2010年高考数学试卷(理)(新课标)(解析卷).doc
2010年高考数学试卷(理)(新课标)(解析卷).doc
免费
0下载
2001年新疆高考文科数学真题及答案.doc
2001年新疆高考文科数学真题及答案.doc
免费
28下载
高中数学高考数学10大专题技巧--专题30  证明数量关系型问题(教师版).docx
高中数学高考数学10大专题技巧--专题30 证明数量关系型问题(教师版).docx
免费
0下载
2013年高考数学试卷(文)(大纲版)(解析卷).pdf
2013年高考数学试卷(文)(大纲版)(解析卷).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测三.docx
免费
8下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (7).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (7).docx
免费
0下载
2022年高考全国乙卷数学(理)真题.docx
2022年高考全国乙卷数学(理)真题.docx
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
免费
0下载
2019年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
2019年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
免费
5下载
专题10  解三角形(解析版).docx
专题10 解三角形(解析版).docx
免费
0下载
精品解析:上海市浦东新区2023届高三二模数学试题(原卷版).docx
精品解析:上海市浦东新区2023届高三二模数学试题(原卷版).docx
免费
0下载
精品解析:江苏省常熟市2024届高三上学期阶段性抽测二数学试题(解析版).docx
精品解析:江苏省常熟市2024届高三上学期阶段性抽测二数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(解析版).docx
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群