必刷大题9解三角形第四章三角函数与解三角形1234561.(2023·州模郑拟)已知△ABC的角内A,B,C所的分对边别为a,b,c,且足满2ccosC=acosB-bcos(B+C).(1)求角C;123456因为A+B+C=π,所以cos(B+C)=-cosA,所以2ccosC=acosB+bcosA,由正弦定理得2sinCcosC=sinAcosB+sinBcosA=sin(A+B).因为sin(A+B)=sinC,所以2sinCcosC=sinC.因为C∈(0,π),所以sinC≠0,所以cosC=12,则C=π3.123456(2)若c=6,△ABC的面积S=6bsinB,求S.由S=6bsinB,根据面公式得积6bsinB=12acsinB=3asinB,所以a=2b.由余弦定理得cosC=a2+b2-c22ab=12,整理得a2+b2-ab=36,即3b2=36,所以b=23,a=43.所以△ABC的面积S=12absinC=12×43×23sinπ3=63.1234562.(2023·唐山模拟)如,在角图锐△ABC中,角内A,B,C所的对边分别为a,b,c,a=bsin2C+2c(sinA-sinBcosC).(1)求sinC的;值123456455123456在角锐△ABC中,455a=bsin2C+2c(sinA-sinBcosC),由正弦定理得455sinA=2sinBsinCcosC+2sinC(sinA-sinBcosC)=2sinAsinC,而sinA>0,所以sinC=255.123456(2)在BC的延上有一点长线D,使得∠DAC=π4,AD=10,求AC,CD.123456sin∠ADC=sin∠ACB-π4在△ACD中,由正弦定理得CDsin∠DAC=ADsinπ-∠ACB=ACsin∠ADC,因为△ABC是角三角形,由锐(1)得cos∠ACB=1-sin2∠ACB=1-2552=55,=22(sin∠ACB-cos∠ACB)=22×255-55=1010,123456所以CD=5102,AC=522.即CD22=AC1010=10255=55,解得CD=5102,AC=522,:在问题△ABC中,角A,B,C所的分对边别为a,b,c,且满足______.注:如果多件分解答,按第一解答分选择个条别个计.(1)求角A;1234563.(2023·德州模拟)在①asinB=bsinA-π3;②(a+b)(sinA-sinB)=(b+c)sinC;③3bsinB+C2=asinB三件中任一充在下面上,解个条选个补横线并决问题.123456选①:由asinB=bsinA-π3得,sinAsinB=sinBsinA-π3.即sinA=sinA-π3,则A=A-π3(舍)或A+A-π3=π,所以A=2π3.123456由余弦定理得cosA=b2+c2-a22bc=-12,选②:由(a+b)(sinA-sinB)=(b+c)sinC得,(a+b)(a-b)=(b+c)c,即b2+c2-a2=-bc,又A∈(0,π),所以A=2π3.选③:由3bsinB+C2=asinB得,3sinB+C2=sinA,即3cosA2=2sinA2cosA2,123456因为cosA2≠0,所以sinA2=32,又A∈(0,π),所以A=2π3.123456(2)若A的角平分线AD长为1,且b+c=6,求sinBsinC的值.123456由S△ABD+S△ADC=S△ABC得,34(b+c)=34bc,即bc=b+c=6,在△ABC中,由余弦定理得a2=b2+c2-2bccosA=(b+c)2-bc=36-6=30,解得a=30,由正弦定理得asinA=bsinB=csinC=2R=210,即R=10,123456所以sinBsinC=bc4R2=640=320.所以sinBsinC的值为320.4.已知a,b,c分角别为锐△ABC三角个内A,B,C的,且对边满足bcosC+bsinC-a-c=0.(1)求B;1234563123456由bcosC+3bsinC-a-c=0,可得sinBcosC+3sinBsinC-sinA-sinC=0⇒sinBcosC+3sinBsinC-sin(B+C)-sinC=0⇒sinBcosC+3sinBsinC-sinBcosC-cosBsinC-sinC=0⇒3sinBsinC-cosBsinC-sinC=0因为B∈0,π2,所以B=π3.⇒3sinB-cosB=1⇒sinB-π6=12,(2)若b=2,求角锐△ABC的周长l的取范值围.123456123456因为B=π3,b=2,利用正弦定理得asinA=csinC=bsinB=2sinπ3=433,所以a=433sinA,c=433sinC,所以l=a+b+c=2+433(sinA+sinC),所以l=2+433sinA+sinA+π3=2+4sinA+π6,123456因为△ABC是角三角形,所以锐0<A<π2,A+B=A+π3>π2,所以π6<A<π2,π3<A+π6<2π3,所以sinA+π6∈32,1,所以2+23<2+4sinA+π6≤6,所以△ABC的周长l的取范值围为(2+23,6].1234565.(2022·沈模阳拟)如,某水域的直型岸图两条线边l1,l2的角夹为60°,某民准安装一直型隔离渔备线网BC(B,C...