2024年新高考数学复习资料第10讲 函数的奇偶性与周期性、对称性(解析版).docx本文件免费下载 【共21页】

2024年新高考数学复习资料第10讲 函数的奇偶性与周期性、对称性(解析版).docx
2024年新高考数学复习资料第10讲 函数的奇偶性与周期性、对称性(解析版).docx
2024年新高考数学复习资料第10讲 函数的奇偶性与周期性、对称性(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第10讲函数的奇偶性与周期性、对称性1、函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2、周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=,则T=2a(a>0).3.函数对称性常用结论(1)f(a-x)=f(a+x)⇔f(-x)=f(2a+x)⇔f(x)=f(2a-x)⇔f(x)的图象关于直线x=a对称.(2)f(a+x)=f(b-x)⇔f(x)的图象关于直线x=对称.f(a+x)=-f(b-x)⇔f(x)的图象关于点对称.1、【2022年全国乙卷】已知函数f(x),g(x)的定义域均为R,且f(x)+g(2−x)=5,g(x)−f(x−4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∑❑❑❑k=122f(k)=¿()A.−21B.−22C.−23D.−24【答案】D【解析】因为y=g(x)的图像关于直线x=2对称,所以g(2−x)=g(x+2),因为g(x)−f(x−4)=7,所以g(x+2)−f(x−2)=7,即g(x+2)=7+f(x−2),因为f(x)+g(2−x)=5,所以f(x)+g(x+2)=5,代入得f(x)+[7+f(x−2)]=5,即f(x)+f(x−2)=−2,所以f(3)+f(5)+…+f(21)=(−2)×5=−10,f(4)+f(6)+…+f(22)=(−2)×5=−10.因为f(x)+g(2−x)=5,所以f(0)+g(2)=5,即f(0)=1,所以f(2)=−2−f(0)=−3.因为g(x)−f(x−4)=7,所以g(x+4)−f(x)=7,又因为f(x)+g(2−x)=5,联立得,g(2−x)+g(x+4)=12,所以y=g(x)的图像关于点(3,6)中心对称,因为函数g(x)的定义域为R,所以g(3)=6因为f(x)+g(x+2)=5,所以f(1)=5−g(3)=−1.所以∑❑❑❑k=122f(k)=f(1)+f(2)+[f(3)+f(5)+…+f(21)]+[f(4)+f(6)+…+f(22)]=−1−3−10−10=−24.故选:D2、【2022年新高考2卷】已知函数f(x)的定义域为R,且f(x+y)+f(x−y)=f(x)f(y),f(1)=1,则∑k=122❑f(k)=¿()A.−3B.−2C.0D.1【答案】A【解析】因为f(x+y)+f(x−y)=f(x)f(y),令x=1,y=0可得,2f(1)=f(1)f(0),所以f(0)=2,令x=0可得,f(y)+f(−y)=2f(y),即f(y)=f(−y),所以函数f(x)为偶函数,令y=1得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comf(x+1)+f(x−1)=f(x)f(1)=f(x),即有f(x+2)+f(x)=f(x+1),从而可知f(x+2)=−f(x−1),f(x−1)=−f(x−4),故f(x+2)=f(x−4),即f(x)=f(x+6),所以函数f(x)的一个周期为6.因为f(2)=f(1)−f(0)=1−2=−1,f(3)=f(2)−f(1)=−1−1=−2,f(4)=f(−2)=f(2)=−1,f(5)=f(−1)=f(1)=1,f(6)=f(0)=2,所以一个周期内的f(1)+f(2)+⋯+f(6)=0.由于22除以6余4,所以∑k=122f(k)=f(1)+f(2)+f(3)+f(4)=1−1−2−1=−3.故选:A.3、【2021年甲卷文科】设是定义域为R的奇函数,且.若,则()A.B.C.D.【答案】C【解析】【分析】由题意利用函数的奇偶性和函数的递推关系即可求得的值.【详解】由题意可得:,而,故.故选:C.4、【2021年甲卷理科】设函数的定义域为R,为奇函数,为偶函数,当时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.若,则()A.B.C.D.【答案】D【解析】因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路一:从定义入手.所以.思路二:从周期性入手由两个对称性可知,函数的周期.所以.故选:D.5、【2021年乙卷文科】设函数,则下列函数中为奇函数的是...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022·微专题·小练习·数学·文科【统考版】专练20.docx
2022·微专题·小练习·数学·文科【统考版】专练20.docx
免费
24下载
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
免费
10下载
2025年新高考数学复习资料高考仿真重难点训练03  指对幂函数 函数的应用(原卷版).docx
2025年新高考数学复习资料高考仿真重难点训练03 指对幂函数 函数的应用(原卷版).docx
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01  数列中的数学文化与新定义(原卷版).docx
2024年新高考数学复习资料重难点突破01 数列中的数学文化与新定义(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
免费
0下载
2024年高考押题预测卷数学(考试版A4) (2).docx
2024年高考押题预测卷数学(考试版A4) (2).docx
免费
27下载
2015年高考数学试卷(文)(安徽)(空白卷).doc
2015年高考数学试卷(文)(安徽)(空白卷).doc
免费
0下载
2019年高考数学试卷(理)(北京)(解析卷).doc
2019年高考数学试卷(理)(北京)(解析卷).doc
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练21.docx
2023《微专题·小练习》·数学·文科·L-2专练21.docx
免费
29下载
2016年北京市高考数学试卷(理科).doc
2016年北京市高考数学试卷(理科).doc
免费
1下载
2010年高考数学试卷(理)(北京)(空白卷).doc
2010年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
免费
0下载
2024版《微专题》·数学·新高考专练 48.docx
2024版《微专题》·数学·新高考专练 48.docx
免费
28下载
1990年山西高考文科数学真题及答案.doc
1990年山西高考文科数学真题及答案.doc
免费
13下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
免费
0下载
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
免费
0下载
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料