2024年新高考数学复习资料第19讲 导数的概念及其运算(解析版).docx本文件免费下载 【共16页】

2024年新高考数学复习资料第19讲 导数的概念及其运算(解析版).docx
2024年新高考数学复习资料第19讲 导数的概念及其运算(解析版).docx
2024年新高考数学复习资料第19讲 导数的概念及其运算(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第19讲导数的概念及其运算1.导数的几何意义(1)函数y=f(x)在x=x0处的导数就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率k,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α是实数)f′(x)=αxα-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=exf′(x)=exf(x)=ax(a>0)f′(x)=axlnaf(x)=lnxf′(x)=f(x)=logax(a>0,a≠1)f′(x)=3.导数的运算法则若f′(x),g′(x)存在,则:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)′=(g(x)≠0).4.复合函数的求导:复合函数y=f(g(x))的导数y′=f′(g(x))·g′(x).5.设s=s(t)是位移函数,则s′(t0)表示物体在t=t0时刻的瞬时速度;设v=v(t)是速度函数,则v′(t0)表示物体在t=t0时刻的瞬时加速度.1、【2022年新高考1卷】若曲线y=(x+a)ex有两条过坐标原点的切线,则a的取值范围是________________.【答案】(−∞,−4)∪(0,+∞)【解析】 y=(x+a)ex,∴y&#039;=(x+1+a)ex,设切点为(x0,y0),则y0=(x0+a)ex0,切线斜率k=(x0+1+a)ex0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com切线方程为:y−(x0+a)ex0=(x0+1+a)ex0(x−x0), 切线过原点,∴−(x0+a)ex0=(x0+1+a)ex0(−x0),整理得:x02+ax0−a=0, 切线有两条,∴∆=a2+4a>0,解得a<−4或a>0,∴a的取值范围是(−∞,−4)∪(0,+∞),故答案为:(−∞,−4)∪(0,+∞)2、【2022年新高考2卷】曲线y=ln∨x∨¿过坐标原点的两条切线的方程为____________,____________.【答案】y=1exy=−1ex【解析】解:因为y=ln|x|,当x>0时y=lnx,设切点为(x0,lnx0),由y&#039;=1x,所以y&#039;¿x=x0=1x0,所以切线方程为y−lnx0=1x0(x−x0),又切线过坐标原点,所以−lnx0=1x0(−x0),解得x0=e,所以切线方程为y−1=1e(x−e),即y=1ex;当x<0时y=ln(−x),设切点为(x1,ln(−x1)),由y&#039;=1x,所以y&#039;¿x=x1=1x1,所以切线方程为y−ln(−x1)=1x1(x−x1),又切线过坐标原点,所以−ln(−x1)=1x1(−x1),解得x1=−e,所以切线方程为y−1=1−e(x+e),即y=−1ex;故答案为:y=1ex;y=−1ex3、【2021年甲卷理科】曲线在点处的切线方程为__________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】由题,当时,,故点在曲线上.求导得:,所以.故切线方程为.故答案为:.4、【2020年新课标1卷理科】函数的图像在点处的切线方程为()A.B.C.D.【答案】B【解析】,,,,因此,所求切线的方程为,即.故选:B.5、【2020年新课标3卷理科】若直线l与曲线y=和x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+【答案】D【解析】设直线在曲线上的切点为,则,函数的导数为,则直线的斜率,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.6、【2019年新课标3卷理科】已知曲线在点处的切线方程为,则A.B.C.D.【答案】D【解析】:,将代入得,故选D.1、下列求导结果正确的是()A.B.C.D.【答案】D【解析】对于A,,故A错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于B,,故B错误;对于C,,故C错误;对于D,,故D正确.故选:D.2、若,则()A.B.C.D.【答案】C【解析】.故选:C.3、(2022·珠海高三期末)若函数f(x)=lnx+的图象在x=1处的切线与直线x+2y-1=0垂直,则a=________.【答案】-1【解析】由意,得题f′(x)=,则f′(1)=1-a,所以(1-a)·=-1,解得a=-1.4、函数y=xsinx-cosx的导数为______________________.【答案】y′=2sinx+xcosx【解析】y′=sinx+xcosx+sinx=2sinx+xcosx.5、(2022·福建·莆田二中模拟预测)曲线在点处的切线方程为______.【答案】【解析】由...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群