小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com微考点6-3圆锥曲线中的定点定值问题(三大题型)求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点,常利用直线的点斜式方程.④设直线为y=kx+m,根据题目给出的条件,转化为坐标之间的关系,利用韦达定理找出k与m之间的关系,即可求出定点。题型一:圆锥曲线中直线过定点问题【精选例题】【例1】已知为椭圆C:上一点,点P与椭圆C的两个焦点构成的三角形面积为.(1)求椭圆C的标准方程;(2)不经过点P的直线l与椭圆C相交于A,B两点,若直线PA与PB斜率的乘积为-1,证明:直线必过定点,并求出这个定点坐标.【答案】(1);(2)证明见解析.【分析】(1)根据题意求出即可得解;(2)设,分情况讨论,联立方程,利用韦达定理求出,再根据直线与的斜率之积为即可得出结论.【详解】(1)由点与椭圆的两个焦点构成的三角形面积为可知,解得:,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com椭圆的标准方程:;(2)设,当直线不平行于轴时,设方程为:,由不经过点知由得,,,,,,,,过定点当直线平行于轴时,,设由和的方程联立解得,方程为:,过定点综上,直线必过定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【例2】已知椭圆的离心率,且椭圆经过点.(1)求椭圆的标准方程;(2)过点且斜率不为零的直线与椭圆交于两点,关于轴的对称点为,求证:直线与轴交于定点.【答案】(1);(2)证明见解析【分析】(1)利用离心率以及椭圆经过点的坐标联立解方程组,即可求得椭圆的标准方程;(2)设直线的方程为并于椭圆联立,利用韦达定理写出直线的方程,求出点横坐标表达式即可得.【详解】(1)由离心率可得,将点代入椭圆方程可得,又;解得,所以椭圆C的方程为(2)设点,,则,直线的方程为,直线与椭圆联立,消去,得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则可得,,易知,得由题意,直线的方程为,令,所以点的横坐标,所以直线与轴交于定点【跟踪训练】1.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):步骤1:设圆心是,在圆内异于圆心处取一定点,记为;步骤2:把纸片折叠,使圆周正好通过点(即折叠后图中的点与点重合);步骤3:把纸片展开,并留下一道折痕,记折痕与的交点为;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点到圆心的距离为,按上述方法折纸.以线段的中点为原点,线段所在直线为轴建立平面直角坐标系,记动点的轨迹为曲线.(1)求的方程;(2)设轨迹与轴从左到右的交点为点,,点为轨迹上异于,,的动点,设交直线于点,连结交轨迹于点.直线、的斜率分别为、.(i)求证:为定值;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(ii)证明直线经过轴上的定点,并求出该定点的坐标.【答案】(1)(2)(i)证明见解析(ii)证明见解析,该定点的坐标为【分析】(1)由折纸的对称性,可知,从而确定点的轨迹;(2)(i)设点,,,根据斜率公式分别求出、,结合椭圆方程证明;(ii)设直线的方程为,直曲联立,结合韦达定理和(i)的结论求出,根据直线方程即可求出定点.【详解】(1)由题意可知,,故点的轨迹是以,为焦点,且长轴长的椭圆,焦距,所以,因此轨迹方程为.(2)证明:(i)设,,,由题可知,如下图所示:则,,而,于是,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,又,则,因此为定值.(ii)设直线的方程为,,,由,得,所以.由(i)可知,,即,化简得,解得或(舍去),...