2024年新高考数学复习资料微考点6-3 圆锥曲线中的定点定值问题(三大题型)(解析版).docx本文件免费下载 【共52页】

2024年新高考数学复习资料微考点6-3 圆锥曲线中的定点定值问题(三大题型)(解析版).docx
2024年新高考数学复习资料微考点6-3 圆锥曲线中的定点定值问题(三大题型)(解析版).docx
2024年新高考数学复习资料微考点6-3 圆锥曲线中的定点定值问题(三大题型)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com微考点6-3圆锥曲线中的定点定值问题(三大题型)求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点,常利用直线的点斜式方程.④设直线为y=kx+m,根据题目给出的条件,转化为坐标之间的关系,利用韦达定理找出k与m之间的关系,即可求出定点。题型一:圆锥曲线中直线过定点问题【精选例题】【例1】已知为椭圆C:上一点,点P与椭圆C的两个焦点构成的三角形面积为.(1)求椭圆C的标准方程;(2)不经过点P的直线l与椭圆C相交于A,B两点,若直线PA与PB斜率的乘积为-1,证明:直线必过定点,并求出这个定点坐标.【答案】(1);(2)证明见解析.【分析】(1)根据题意求出即可得解;(2)设,分情况讨论,联立方程,利用韦达定理求出,再根据直线与的斜率之积为即可得出结论.【详解】(1)由点与椭圆的两个焦点构成的三角形面积为可知,解得:,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com椭圆的标准方程:;(2)设,当直线不平行于轴时,设方程为:,由不经过点知由得,,,,,,,,过定点当直线平行于轴时,,设由和的方程联立解得,方程为:,过定点综上,直线必过定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【例2】已知椭圆的离心率,且椭圆经过点.(1)求椭圆的标准方程;(2)过点且斜率不为零的直线与椭圆交于两点,关于轴的对称点为,求证:直线与轴交于定点.【答案】(1);(2)证明见解析【分析】(1)利用离心率以及椭圆经过点的坐标联立解方程组,即可求得椭圆的标准方程;(2)设直线的方程为并于椭圆联立,利用韦达定理写出直线的方程,求出点横坐标表达式即可得.【详解】(1)由离心率可得,将点代入椭圆方程可得,又;解得,所以椭圆C的方程为(2)设点,,则,直线的方程为,直线与椭圆联立,消去,得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则可得,,易知,得由题意,直线的方程为,令,所以点的横坐标,所以直线与轴交于定点【跟踪训练】1.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):步骤1:设圆心是,在圆内异于圆心处取一定点,记为;步骤2:把纸片折叠,使圆周正好通过点(即折叠后图中的点与点重合);步骤3:把纸片展开,并留下一道折痕,记折痕与的交点为;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点到圆心的距离为,按上述方法折纸.以线段的中点为原点,线段所在直线为轴建立平面直角坐标系,记动点的轨迹为曲线.(1)求的方程;(2)设轨迹与轴从左到右的交点为点,,点为轨迹上异于,,的动点,设交直线于点,连结交轨迹于点.直线、的斜率分别为、.(i)求证:为定值;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(ii)证明直线经过轴上的定点,并求出该定点的坐标.【答案】(1)(2)(i)证明见解析(ii)证明见解析,该定点的坐标为【分析】(1)由折纸的对称性,可知,从而确定点的轨迹;(2)(i)设点,,,根据斜率公式分别求出、,结合椭圆方程证明;(ii)设直线的方程为,直曲联立,结合韦达定理和(i)的结论求出,根据直线方程即可求出定点.【详解】(1)由题意可知,,故点的轨迹是以,为焦点,且长轴长的椭圆,焦距,所以,因此轨迹方程为.(2)证明:(i)设,,,由题可知,如下图所示:则,,而,于是,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,又,则,因此为定值.(ii)设直线的方程为,,,由,得,所以.由(i)可知,,即,化简得,解得或(舍去),...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2013年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
高中2023《微专题·小练习》·数学·新教材·XL-3专练 50.docx
高中2023《微专题·小练习》·数学·新教材·XL-3专练 50.docx
免费
0下载
1990年广东高考理科数学真题及答案.doc
1990年广东高考理科数学真题及答案.doc
免费
19下载
高中数学(必修第二册)(BSD版)课时作业(word)  课时作业47.doc
高中数学(必修第二册)(BSD版)课时作业(word) 课时作业47.doc
免费
4下载
【高考数学】备战2024年(新高考专用)专题15 排列组合(6大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题15 排列组合(6大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2005年陕西高考理科数学真题及答案.doc
2005年陕西高考理科数学真题及答案.doc
免费
7下载
1994年高考数学真题(文科)(天津自主命题).doc
1994年高考数学真题(文科)(天津自主命题).doc
免费
12下载
2003年四川高考理科数学真题及答案.doc
2003年四川高考理科数学真题及答案.doc
免费
16下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 62.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 62.docx
免费
23下载
高中数学高考数学10大专题技巧--专题26 极值点偏移之其他型不等式的证明(学生版).docx.doc
高中数学高考数学10大专题技巧--专题26 极值点偏移之其他型不等式的证明(学生版).docx.doc
免费
0下载
2000年高考数学真题(理科)(天津自主命题).doc
2000年高考数学真题(理科)(天津自主命题).doc
免费
17下载
2024年新高考数学复习资料【专项精练】第05课 函数的单调性与最值-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第05课 函数的单调性与最值-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练83.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练83.docx
免费
12下载
高中2024版《微专题》·数学(文)·统考版专练 19.docx
高中2024版《微专题》·数学(文)·统考版专练 19.docx
免费
0下载
高中数学高考数学10大专题技巧--专题五 平面向量的模(教师版).docx
高中数学高考数学10大专题技巧--专题五 平面向量的模(教师版).docx
免费
0下载
2024年新高考数学复习资料大题01 解三角形(精选30题)(原卷版).docx
2024年新高考数学复习资料大题01 解三角形(精选30题)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题11 双曲线中的参数及范围问题(解析版).docx
2024年新高考数学复习资料专题11 双曲线中的参数及范围问题(解析版).docx
免费
0下载
2014年辽宁省高考数学试卷(理科)往年高考真题.doc
2014年辽宁省高考数学试卷(理科)往年高考真题.doc
免费
0下载
1993年天津高考理科数学真题及答案.doc
1993年天津高考理科数学真题及答案.doc
免费
3下载
2024年新高考数学复习资料专题02 不等式与复数(6大核心考点)(讲义)(原卷版).docx
2024年新高考数学复习资料专题02 不等式与复数(6大核心考点)(讲义)(原卷版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群