小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第51讲直线与平面、平面与平面垂直知识梳理1.直线与平面垂直(1)定义如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l叫做平面α的垂线,平面α叫做直线l的垂面.(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直性质定理垂直于同一个平面的两条直线平行2.直线和平面所成的角(1)定义平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是的角.(2)范围:3.平面与平面垂直(1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作的两条射线,这两条射线所构成的角叫做二面角的平面角.(2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直文字语言图形语言符号语言性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1、【2022年全国乙卷】在正方体ABCD−A1B1C1D1中,E,F分别为AB,BC的中点,则()A.平面B1EF⊥平面BDD1B.平面B1EF⊥平面A1BDC.平面B1EF/¿平面A1ACD.平面B1EF/¿平面A1C1D2、【2021年新高考2卷】如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是()A.B.C.D.3、【2021年新高考1卷】在正三棱柱中,,点满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面4、【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=❑√3.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:BD⊥PA;5、【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;1、(2022·哈尔模滨拟)设m,n是两条不同的直线,α是平面,m,n不在α内,下列结论中错误的是()A.m⊥α,n∥α,则m⊥nB.m⊥α,n⊥α,则m∥nC.m⊥α,m⊥n,则n∥α小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comD.m⊥n,n∥α,则m⊥α2、已知m,l是两条不同的直线,α,β是两个不同的平面,则下列可以推出α⊥β的是()A.m⊥l,m⊂β,l⊥αB.m⊥l,α∩β=l,m⊂αC.m∥l,m⊥α,l⊥βD.l⊥α,m∥l,m∥β3、.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC4、如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN∥ABB.平面VAC⊥平面VBCC.MN与BC所成的角为45°D.OC⊥平面VAC5、如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)考向一线面垂直的判定与性质例1、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com=60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.变式1、如图,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=AB,PH为△PAD中AD边上的高.求证:(1)PH⊥平面ABCD;(2)EF⊥平面PAB.变式2、如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E,连接...