2024年新高考数学复习资料微考点6-6 圆锥曲线中斜率和积与韦达定理的应用(解析版).docx本文件免费下载 【共32页】

2024年新高考数学复习资料微考点6-6 圆锥曲线中斜率和积与韦达定理的应用(解析版).docx
2024年新高考数学复习资料微考点6-6 圆锥曲线中斜率和积与韦达定理的应用(解析版).docx
2024年新高考数学复习资料微考点6-6 圆锥曲线中斜率和积与韦达定理的应用(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com微考点6-6圆锥曲线中斜率和积与韦达定理的应用【考点分析】斜率和(积)构造与韦达定理目前我们市面上的斜率型题目中一大类就是斜率和(积)构造,这其中主要特征就是一定点两动点,而定点的特征又可进一步分成在坐标轴上和一般点.倘若定点,在椭圆上的动点,那么:①,此时已经凑出韦达定理的形式,就无需再解点,可直接代入韦达定理求解.②,这里对交叉项的处理可进一步代入直线方程:,化简可得:(*),再代入韦达定理.注意,这一步代入很重要,(*)式是一个非常简洁的结构,易于操作.③.可进一步代入直线方程:,化简可得:【精选例题】【例1】已知椭圆的离心率为,点在C上.过C的右焦点F的直线交C小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com于M,N两点.(1)求椭圆C的方程;(2)若动点P满足,求动点P的轨迹方程.【答案】(1);(2)x=2【详解】(1)由题意,b=1,,又,解得b=1,,c=1.故椭圆C的方程为.(2)直线MN的斜率存在时,设直线MN的方程为.设,,.将代入,得.于是,.①由题意,有,即.显然点不在直线上,∴,从而.将式①代入,得,化简得.当直线MN的斜率不存在时,经检验符合题意.故满足题意的点P的轨迹方程为直线x=2.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【例2】已知点在双曲线上,直线(不过点)的斜率为,且交双曲线于、两点.(1)求双曲线的方程;(2)求证:直线、的斜率之和为定值.【答案】(1);(2)证明见解析【详解】(1)解:将点的坐标代入双曲线的方程可得,解得,所以,双曲线的方程为.(2)证明:由题意,设直线的方程为,设、,联立可得,,解得或,由韦达定理可得,,所以,.可得直线、的斜率之和为.【例3】已知为坐标原点,椭圆的离心率为,椭圆的上顶点到右顶点的距离为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.(1)求椭圆的方程;(2)若椭圆的左、右顶点分别为、,过点作直线与椭圆交于、两点,且、位于第一象限,在线段上,直线与直线相交于点,连接、,直线、的斜率分别记为、,求的值.【答案】(1);(2)【详解】(1)解:由题意知,,椭圆的上顶点到右顶点的距离为,即,解得,,,因此,椭圆的方程为.(2)解:如下图所示:不妨设、,由图可知,直线的斜率存在,设直线的方程为,因为点,则,则,联立可得,,可得,即小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,解得,由韦达定理可得,解得,所以,,易知、,由于在直线上,设,又由于在直线上,则,所以,,.【例4】已知椭圆的离心率是,且过点.(1)求椭圆C的方程;(2)椭圆C的左、右顶点分别为,,且P,Q为椭圆C上异于,的点,若直线过点,是否存在实数,使得恒成立.若存在,求实数的值;若不存在,说明理由.【答案】(1);(2)存在实数,满足题设条件【详解】(1)由题意,,,解得:①. 点在椭圆C上,∴②联立①、②,解得,,故所求椭圆C的标准方程是小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)解法一:由(1)知,.当直线斜率不存在时,.与椭圆联立可得,,则,,故而,可得;得当直线斜率存在且不为0时,设,令,,则,.联立消去y并整理,得,则由韦达定理得,,假设存在实数,使得,则,即,整理得,变形为,则,即,即,即或,得或.当时,.此时,,整理得,解得与题设矛盾,所以,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解法二:由(1)知,,.可设,,.联立,得,由韦达定理得:,,所以,所以故存在实数,满足题设条件.【例5】已知椭圆:的右焦点在直线上,分别为的左、右顶点,且.(1)求的标准方程;(2)已知,是否存在过点的直线交于,两点,使得直线,的斜率之和等于-1?若存在,求出的方程;若不存在,请说明理由.【答案】(1);(2)存在,其方程为:【详解】(1)设右焦点,直线与轴的交点为,所以椭圆右焦点的坐标为故在椭圆中,由题意,结合,则,所以椭圆的方程...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
免费
30下载
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
免费
0下载
2015年高考数学试卷(文)(湖北)(解析卷).pdf
2015年高考数学试卷(文)(湖北)(解析卷).pdf
免费
0下载
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
免费
0下载
高中数学高考数学10大专题技巧--专题五    函数的奇偶性(学生版).docx.doc
高中数学高考数学10大专题技巧--专题五 函数的奇偶性(学生版).docx.doc
免费
0下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2016年上海市奉贤区高考数学二模试卷(理科).doc
2016年上海市奉贤区高考数学二模试卷(理科).doc
免费
0下载
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
免费
0下载
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
免费
6下载
2016年高考数学试卷(理)(北京)(解析卷).pdf
2016年高考数学试卷(理)(北京)(解析卷).pdf
免费
0下载
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2014年高考数学真题(江苏自主命题)(解析版).doc
2014年高考数学真题(江苏自主命题)(解析版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
免费
20下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  12.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 12.docx
免费
11下载
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
免费
0下载
2002年西藏高考文科数学真题及答案.doc
2002年西藏高考文科数学真题及答案.doc
免费
1下载
2022年新高考全国I卷数学真题(解析版).docx
2022年新高考全国I卷数学真题(解析版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
2014年高考数学试卷(理)(湖南)(空白卷).pdf
2014年高考数学试卷(理)(湖南)(空白卷).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群