小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第54讲空间角与距离的计算(1)1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m,l∥α,n⊥m⇔n·m=0l⊥α,n∥m⇔n=λm平面α,β的法向量分别为n,m,α∥β,n∥m⇔n=λmα⊥β,n⊥m⇔n·m=03.异面直线所成的角3.设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角βl1与l2所成的角θ范围(0,π)a与b的夹角βl1与l2所成的角θ求法cosβ=cosθ=|cosβ|=4.求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sinθ=|cos〈a,n〉|=.5.求二面角的大小(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈AB,CD〉①②③(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1、【2021年新高考1卷】在正三棱柱中,,点满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面【答案】BD【解析】易知,点在矩形内部(含边界).对于A,当时,,即此时线段,周长不是定值,故A错误;对于B,当时,,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确.对于C,当时,,取,中点分别为,,则,所以点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com轨迹为线段,不妨建系解决,建立空间直角坐标系如图,,,,则,,,所以或.故均满足,故C错误;对于D,当时,,取,中点为.,所以点轨迹为线段.设,因为,所以,,所以,此时与重合,故D正确.故选:BD.2、【2018年新课标2卷理科】在长方体中,,,则异面直线与所成角的余弦值为A.B.C.D.【答案】C【解析】以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.3、【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=❑√3.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【解析】(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD/¿AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=❑√32,BD=❑√DE2+BE2=❑√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)如图,以点D为原点建立空间直角坐标系,BD=❑√3,则A(1,0,0),B(0,❑√3,0),P(0,0,❑√3),则⃗AP=(−1,0,❑√3),⃗BP=(0,−❑√3,❑√3),⃗DP=(0,0,❑√3),设平面PAB的法向量⃗n=(x,y,z),则有{n→⋅AP→=−x+❑√3z=0n→⋅BP→=−❑√3y+❑√3z=0,可取⃗n=(❑√3,1,1),则cos〈⃗n,⃗DP〉=⃗n⋅⃗DP¿⃗n∨¿⃗DP∨¿=❑√55¿,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以PD与平面PAB所成角的正弦值为❑√55.4、【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.【解析】(1)因为AD=CD,E为AC的中点,所以AC⊥DE;在△ABD和△CBD中,因为AD=CD,∠ADB=∠CDB,DB=DB,所以△ABD≌△CBD,所以AB=CB,又因为E为AC的中点,所以AC⊥BE;又因...