小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第55讲空间角与距离的计算(2)空间角与距离的计算1、【2021年甲卷理科】已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.(1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?2、【2020年新高考1卷(山东卷)】如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.1、(2022·河北深州市中学高三期末)如图,在三棱柱中,是边长为2的等边三角形,,,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.2、(2022·二模青岛)如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=2,M是PB的中点,四边形OBCH为正方形.(1)设平面POH∩平面PBC=l,求证:l∥BC;(2)设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成的角最大时,求MN的长.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考向一利用空间向量解决探索性问题例1、(2022·安徽·合肥市第八中学模拟预测(理))四棱锥中,底面是边长为的正方形,,点P在底面的射影为点O,且,点M是的中点.(1)求证:;(2)在线段上,是否存在点N,使二面角的余弦值为?若存在,请确定点N的位置,若不存在,请说明理由.变式1、(2022年河北省衡水中学高三模拟试卷)如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心,点在棱上,且的面积为1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)若点是的中点,证明:平面平面;(2)在棱上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,求出点的位置;若不存在,说明理由.变式2、(2022·湖南沙第一中模长县学拟)在直三棱柱ABC-A1B1C1中,AB⊥AC,且AC=AB=AA1=2.(1)求证:A1B⊥B1C;(2)M,N分别为棱CC1,BC的中点,点P在线段A1B1上,是否存在点P,使平面PMN与平面ABC所成角的余弦值为,若存在,试确定点P的位置;若不存在,请说明理由.方法总结:用向量法解决与垂直、平行有关的探索性问题的方法:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考向二运用向量研究空间距离例2、(2022年福建省福州市高三模拟试卷)如图,在四棱锥P﹣ABCD中,PAB是边长为2的等边三角形.梯形ABCD满足BC=CD=1,AB∥CD,AB⊥BC.(1)求证:PD⊥AB;(2)若PD=2,求点D到平面PBC的距离.变式1、如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2,求点A到平面MBC的距离.方法总结:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.考向三运用向量研究最值问题例3、如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)在棱A′B上找一点F,使EF∥平面A′CD;(2)当四棱锥A′BCDE的体积取最大值时,求平面A′CD与平面A′BE所成角的余弦值.变式1、(2022·广东东莞·高三期末)如图,在正四棱锥中,点,分别是,中点,点是上的一点.(1)证明:;(2)若四棱锥的所有棱长为,求直线与平面所成角的正弦值的最大值..小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方法总结:建立关于角距离等所求...