2024年新高考数学复习资料第55讲 空间角与距离的计算(2)(原卷版).docx本文件免费下载 【共10页】

2024年新高考数学复习资料第55讲 空间角与距离的计算(2)(原卷版).docx
2024年新高考数学复习资料第55讲 空间角与距离的计算(2)(原卷版).docx
2024年新高考数学复习资料第55讲 空间角与距离的计算(2)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第55讲空间角与距离的计算(2)空间角与距离的计算1、【2021年甲卷理科】已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.(1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?2、【2020年新高考1卷(山东卷)】如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.1、(2022·河北深州市中学高三期末)如图,在三棱柱中,是边长为2的等边三角形,,,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.2、(2022·二模青岛)如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=2,M是PB的中点,四边形OBCH为正方形.(1)设平面POH∩平面PBC=l,求证:l∥BC;(2)设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成的角最大时,求MN的长.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考向一利用空间向量解决探索性问题例1、(2022·安徽·合肥市第八中学模拟预测(理))四棱锥中,底面是边长为的正方形,,点P在底面的射影为点O,且,点M是的中点.(1)求证:;(2)在线段上,是否存在点N,使二面角的余弦值为?若存在,请确定点N的位置,若不存在,请说明理由.变式1、(2022年河北省衡水中学高三模拟试卷)如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心,点在棱上,且的面积为1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)若点是的中点,证明:平面平面;(2)在棱上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,求出点的位置;若不存在,说明理由.变式2、(2022·湖南沙第一中模长县学拟)在直三棱柱ABC-A1B1C1中,AB⊥AC,且AC=AB=AA1=2.(1)求证:A1B⊥B1C;(2)M,N分别为棱CC1,BC的中点,点P在线段A1B1上,是否存在点P,使平面PMN与平面ABC所成角的余弦值为,若存在,试确定点P的位置;若不存在,请说明理由.方法总结:用向量法解决与垂直、平行有关的探索性问题的方法:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考向二运用向量研究空间距离例2、(2022年福建省福州市高三模拟试卷)如图,在四棱锥P﹣ABCD中,PAB是边长为2的等边三角形.梯形ABCD满足BC=CD=1,AB∥CD,AB⊥BC.(1)求证:PD⊥AB;(2)若PD=2,求点D到平面PBC的距离.变式1、如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2,求点A到平面MBC的距离.方法总结:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.考向三运用向量研究最值问题例3、如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)在棱A′B上找一点F,使EF∥平面A′CD;(2)当四棱锥A′BCDE的体积取最大值时,求平面A′CD与平面A′BE所成角的余弦值.变式1、(2022·广东东莞·高三期末)如图,在正四棱锥中,点,分别是,中点,点是上的一点.(1)证明:;(2)若四棱锥的所有棱长为,求直线与平面所成角的正弦值的最大值..小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方法总结:建立关于角距离等所求...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】详解答案.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】详解答案.docx
免费
21下载
2025版新高考版 数学考点清单+题型清单01专题一集合与常用逻辑用语01_1.2  常用逻辑用语讲解册.pdf
2025版新高考版 数学考点清单+题型清单01专题一集合与常用逻辑用语01_1.2 常用逻辑用语讲解册.pdf
免费
26下载
高中数学高考数学10大专题技巧--专题12 导数中隐零点的应用(教师版).docx
高中数学高考数学10大专题技巧--专题12 导数中隐零点的应用(教师版).docx
免费
0下载
2001年上海高考理科数学真题及答案.doc
2001年上海高考理科数学真题及答案.doc
免费
14下载
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
免费
0下载
2012年高考数学试卷(理)(浙江)(空白卷).pdf
2012年高考数学试卷(理)(浙江)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(原卷版).docx
免费
0下载
2012年高考数学真题(文科)(大纲版)(解析版).doc
2012年高考数学真题(文科)(大纲版)(解析版).doc
免费
27下载
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
免费
0下载
2014年高考数学试卷(文)(天津)(空白卷).pdf
2014年高考数学试卷(文)(天津)(空白卷).pdf
免费
0下载
2017年高考数学试卷(理)(新课标Ⅱ)(空白卷) (11).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(空白卷) (11).pdf
免费
0下载
2025年新高考数学复习资料专题11 数列的极限(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题11 数列的极限(典型题型归类训练)(原卷版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练7.docx
2022·微专题·小练习·数学·理科【统考版】专练7.docx
免费
4下载
2013年高考数学试卷(江苏)(空白卷).doc
2013年高考数学试卷(江苏)(空白卷).doc
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(十五).docx
免费
28下载
2016年高考数学试卷(理)(上海)(解析卷).pdf
2016年高考数学试卷(理)(上海)(解析卷).pdf
免费
0下载
2022年新高考全国I卷数学真题.docx
2022年新高考全国I卷数学真题.docx
免费
0下载
2015年辽宁高考文科数学真题及答案.doc
2015年辽宁高考文科数学真题及答案.doc
免费
5下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料