2024年新高考数学复习资料专题3.3 解三角形(解析版).docx本文件免费下载 【共31页】

2024年新高考数学复习资料专题3.3 解三角形(解析版).docx
2024年新高考数学复习资料专题3.3 解三角形(解析版).docx
2024年新高考数学复习资料专题3.3 解三角形(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题3-3解三角形01专题网络·思维脑图(含基础知识梳理、常用结论与技巧)02考情分析·解密高考03高频考点·以考定法(四大命题方向+四道高考预测试题,高考必考·(10-17)分)命题点1正弦余弦定理基本应用命题点2解三角形中三线问题命题点3解三角形中周长面积问题命题点4解三角形中最值范围问题高考猜题04创新好题·分层训练(精选8道最新名校模拟试题+8道易错提升)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即⃗AB(其中R是三角形外接圆的半径)2.变形:1)⃗AB.2)化边为角:CBAcbasin:sin:sin::;⃗AB⃗AB⃗AB3)化边为角:⃗AB4)化角为边:⃗AB⃗AB⃗AB小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5)化角为边:⃗AB三角形面积.⃗AB余弦定理:⃗AB⃗AB⃗AB变形:⃗AB⃗AB⃗AB利用余弦定理判断三角形形状:设⃗AB、⃗AB、⃗AB是⃗AB的角⃗AB、⃗AB、⃗AB的对边,则:①若,,所以为锐角②若⃗AB③若,所以为钝角,则是钝角三角三角形中常见的结论三角形三角关系:A+B+C=180°;C=180°—(A+B);三角形三边关系:两边之和大于第三边:,,;两边之差小于第三边:,,;在同一个三角形中大边对大角:⃗AB三角形内的诱导公式:⃗AB⃗AB⃗AB⃗AB极化恒等式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在△中,是边的中点,则⃗AB⃗AC=|⃗AD|2−|⃗DB|2.DCBA如图,由⃗AB∗⃗AC=[12(⃗AB+⃗AC)]2−[12(⃗AB−⃗AC)]2=⃗AD2−(12⃗CB)2=|⃗AD|2−|⃗DB|2得证.⃗AB∗⃗AC=(⃗AM)2−14(⃗BC)2解三角形是新高考中必考点,一般以1+1(一道小题一道解答题)或者是0+1(只出现一道解答)形式出现,往往放在解答题前两题,相对难度比较小。真题多维细目表考点考向考题解三角形①正弦余弦基本应用②解三角形中三线问题③解三角形中周长面积问题④解三角形中最值范围问题2023全国乙卷T4全国乙卷T172021全国甲卷T82023新高考甲卷T162023新高考Ⅰ卷T172023新高考Ⅱ卷T17全国乙卷T18甲卷T172022乙卷T17新高考Ⅱ卷T182021全国乙卷T152021新高考Ⅱ卷T182022全国甲卷2022年新高考Ⅰ卷T18小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com命题点2正弦余弦定理基本应用典例01(2023·全国乙卷)在中,内角的对边分别是,若,且,则()A.B.C.D.【答案】C【分析】首先利用正弦定理边化角,然后结合诱导公式和两角和的正弦公式求得的值,最后利用三角形内角和定理可得的值.【详解】由题意结合正弦定理可得,即,整理可得,由于,故,据此可得,则.故选:C.典例02(2023·全国乙卷)记的内角A,B,C的对边分别为a,b,c﹐已知.(1)若,求C;(2)证明:【答案】(1);小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)证明见解析.(2)由题意利用两角差的正弦公式展开得,再根据正弦定理,余弦定理化简即可证出.【详解】(1)由,可得,,而,所以,即有,而,显然,所以,,而,,所以.(2)由可得,,再由正弦定理可得,,然后根据余弦定理可知,,化简得:,故原等式成立.命题点2三角形中三线问题典例01(2023·全国甲卷)在中,,的角平分线交BC于D,则.【答案】【分析】方法一:利用余弦定理求出,再根据等面积法求出;方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.【详解】如图所示:记,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方法一:由余弦定理可得,,因为,解得:,由可得,,解得:.故答案为:.方法二:由余弦定理可得,,因为,解得:,由正弦定理可得,,解得:,,因为,所以,,又,所以,即.故答案为:.典例02(2023·全国新课标Ι)已知在中,.(1)求;(2)设,求边上的高.【答案】(1)(2)6【详解】(1),,即,又,,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,所以,.(2)由(1)知,,由,由正弦定理,,可得,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
免费
30下载
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
免费
0下载
2015年高考数学试卷(文)(湖北)(解析卷).pdf
2015年高考数学试卷(文)(湖北)(解析卷).pdf
免费
0下载
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
免费
0下载
高中数学高考数学10大专题技巧--专题五    函数的奇偶性(学生版).docx.doc
高中数学高考数学10大专题技巧--专题五 函数的奇偶性(学生版).docx.doc
免费
0下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2016年上海市奉贤区高考数学二模试卷(理科).doc
2016年上海市奉贤区高考数学二模试卷(理科).doc
免费
0下载
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
免费
0下载
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
免费
6下载
2016年高考数学试卷(理)(北京)(解析卷).pdf
2016年高考数学试卷(理)(北京)(解析卷).pdf
免费
0下载
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2014年高考数学真题(江苏自主命题)(解析版).doc
2014年高考数学真题(江苏自主命题)(解析版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
免费
20下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  12.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 12.docx
免费
11下载
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
免费
0下载
2002年西藏高考文科数学真题及答案.doc
2002年西藏高考文科数学真题及答案.doc
免费
1下载
2022年新高考全国I卷数学真题(解析版).docx
2022年新高考全国I卷数学真题(解析版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
2014年高考数学试卷(理)(湖南)(空白卷).pdf
2014年高考数学试卷(理)(湖南)(空白卷).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群