2024年新高考数学复习资料专题05 一元函数的导数及其应用(解析版).docx本文件免费下载 【共20页】

2024年新高考数学复习资料专题05 一元函数的导数及其应用(解析版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(解析版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题05一元函数的导数及其应用一、知识速览二、考点速览小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点1导数的概念1、函数y=f(x)在x=x0处的导数一般地,称函数y=f(x)在x=x0处的瞬时变化率=lim为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=lim=lim.2、导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).3、函数f(x)的导函数:称函数f′(x)=lim为f(x)的导函数.知识点2导数的运算1、基本初等函数的导数公式原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xn(n∈Q*)f′(x)=nxn-1f(x)=sinxf′(x)=cos_xf(x)=cosxf′(x)=-sin_xf(x)=ax(a>0且a≠1)f′(x)=axln_af(x)=exf′(x)=exf(x)=logax(x>0,a>0且a≠1)f′(x)=f(x)=lnx(x>0)f′(x)=2、导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)′=(g(x)≠0).知识点3利用导数研究函数的单调性1、导数与函数的单调性的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.【注意】(1)在某区间内()是函数在此区间上为增(减)函数的充分不必要条件;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)可导函数在上是增(减)函数的充要条件是对∀x∈(a,b),都有()且在上的任何子区间内都不恒为零.2、导数法求函数单调区间的步骤(1)确定函数fx的定义域;(2)求fx(通分合并、因式分解);(3)解不等式0fx,解集在定义域内的部分为单调递增区间;(4)解不等式0fx,解集在定义域内的部分为单调递减区间.知识点4导数与函数的极值、最值1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.一、求曲线“在”与“过”某点的切线1、求曲线“在”某点处的切线方程步骤第一步(求斜率):求出曲线在点00,xfx处切线的斜率0()fx第二步(写方程):用点斜式000()()()yfxfxxx第三步(变形式):将点斜式变成一般式。2、求曲线“过”某点处的切线方程步骤第一步:设切点为00,Qxfx;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第二步:求出函数()yfx在点0x处的导数0()fx;第三步:利用Q在曲线上和0()PQfxk,解出0x及0()fx;第四步:根据直线的点斜式方程,得切线方程为000()()()yfxfxxx.【典例1】(2023·陕西西安·西安市大明宫中学校考模拟预测)已知函数,则曲线在点处的切线方程为()A.B.C.D.【答案】B【解析】,切点为,,所以切线方程为,即故选:B【典例2】(2023·西藏日喀则·统考一模)已知直线是曲线在点处的切线方程,则【答案】e【解析】由题设,且,则,所以,切线方程为,即,所以,故.【典例3】(2023·云南·校联考模拟预测)曲线过坐标原点的切线方程为.【答案】【解析】设切点为,则,,切线的斜率为,所以切线方程为,又切线过原点,所以,即,解得,所以切线方程为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题02 函数的单调性与最值(原卷版).docx
2024年新高考数学复习资料专题02 函数的单调性与最值(原卷版).docx
免费
0下载
2015年高考数学试卷(文)(新课标Ⅱ)(空白卷) (10).pdf
2015年高考数学试卷(文)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2014年高考数学试卷(理)(大纲版)(空白卷).doc
2014年高考数学试卷(理)(大纲版)(空白卷).doc
免费
0下载
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷) (3).pdf
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷) (3).pdf
免费
0下载
2020年高考数学试卷(文)(新课标Ⅲ)(解析卷) (2).pdf
2020年高考数学试卷(文)(新课标Ⅲ)(解析卷) (2).pdf
免费
0下载
2017年高考数学试卷(理)(天津)(解析卷).pdf
2017年高考数学试卷(理)(天津)(解析卷).pdf
免费
0下载
2025年新高考数学复习资料考点05一元二次方程、不等式(2种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料考点05一元二次方程、不等式(2种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】仿真模拟冲刺卷(二).docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】仿真模拟冲刺卷(二).docx
免费
22下载
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷).doc
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷).doc
免费
0下载
高考数学专题09 立体几何(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题09 立体几何(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
1990年江苏高考文科数学真题及答案.doc
1990年江苏高考文科数学真题及答案.doc
免费
5下载
2022届江苏省南京市金陵中学高三下学期复习检测(二)数学试题(原卷版).docx
2022届江苏省南京市金陵中学高三下学期复习检测(二)数学试题(原卷版).docx
免费
0下载
2014年高考数学试卷(理)(重庆)(解析卷).doc
2014年高考数学试卷(理)(重庆)(解析卷).doc
免费
0下载
2019年高考数学试卷(理)(北京)(解析卷).doc
2019年高考数学试卷(理)(北京)(解析卷).doc
免费
0下载
2010年高考数学试卷(文)(江西)(空白卷).doc
2010年高考数学试卷(文)(江西)(空白卷).doc
免费
0下载
1997年四川高考文科数学真题及答案.doc
1997年四川高考文科数学真题及答案.doc
免费
14下载
高中2024版考评特训卷·数学·理科【统考版】单元检测(九).docx
高中2024版考评特训卷·数学·理科【统考版】单元检测(九).docx
免费
0下载
2013年江西省高考数学试卷(理科)往年高考真题.doc
2013年江西省高考数学试卷(理科)往年高考真题.doc
免费
0下载
2025届高中数学一轮复习课件:第七章 第2讲等差数列(共75张ppt).pptx
2025届高中数学一轮复习课件:第七章 第2讲等差数列(共75张ppt).pptx
免费
0下载
2025年新高考数学复习资料第02讲 成对数据的统计分析(五大题型)(讲义)(解析版).docx
2025年新高考数学复习资料第02讲 成对数据的统计分析(五大题型)(讲义)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群