2024年新高考数学复习资料专题17 圆锥曲线的综合应用(解析版).docx本文件免费下载 【共29页】

2024年新高考数学复习资料专题17 圆锥曲线的综合应用(解析版).docx
2024年新高考数学复习资料专题17 圆锥曲线的综合应用(解析版).docx
2024年新高考数学复习资料专题17 圆锥曲线的综合应用(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题17圆锥曲线的综合应用一、知识速览二、考点速览知识点1直线与椭圆的位置关系小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1、直线与椭圆的位置判断设直线方程为,椭圆方程为联立消去y得一个关于x的一元二次方程①直线和椭圆相交直线和椭圆有两个交点(或两个公共点);②直线和椭圆相切直线和椭圆有一个切点(或一个公共点);③直线和椭圆相离直线和椭圆无公共点.2、直线与椭圆相交的弦长公式(1)定义:连接椭圆上两个点的线段称为椭圆的弦.(2)求弦长的方法①交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求.②根与系数的关系法:如果直线的斜率为k,被椭圆截得弦AB两端点坐标分别为(x1,y1),(x2,y2),则弦长公式为:知识点2直线与双曲线的位置关系1、直线与双曲线的位置关系判断将双曲线方程与直线方程联立消去得到关于的一元二次方程,(1)当,即,直线与双曲线的渐近线平行,直线与双曲线只有一个交点;(2)当,即,设该一元二次方程的判别式为,若,直线与双曲线相交,有两个公共点;若,直线与双曲线相切,有一个公共点;若,直线与双曲线相离,没有公共点;注意:直线与双曲线有一个公共点时,可能相交或相切.2、直线与双曲线弦长求法若直线与双曲线(,)交于,两点,则或().(具体同椭圆相同)知识点3直线与抛物线的位置关系1、直线与抛物线的位置关系有三种情况相交(有两个公共点或一个公共点);小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com相切(有一个公共点);相离(没有公共点).2、以抛物线与直线的位置关系为例:(1)直线的斜率不存在,设直线方程为,若,直线与抛物线有两个交点;若,直线与抛物线有一个交点,且交点既是原点又是切点;若,直线与抛物线没有交点.(2)直线的斜率存在.设直线,抛物线,直线与抛物线的交点的个数等于方程组,的解的个数,即二次方程(或)解的个数.①若,则当时,直线与抛物线相交,有两个公共点;当时,直线与抛物线相切,有个公共点;当时,直线与抛物线相离,无公共点.②若,则直线与抛物线相交,有一个公共点.3、直线与抛物线相交弦长问题(1)一般弦长设为抛物线的弦,,,弦AB的中点为.①弦长公式:(为直线的斜率,且).②,推导:由题意,知,①②由①-②,得,故,即.③直线的方程为.(2)焦点弦长如图,是抛物线过焦点的一条弦,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设,,的中点,过点,,分别向抛物线的准线作垂线,垂足分别为点,,,根据抛物线的定义有,,故.又因为是梯形的中位线,所以,从而有下列结论;①以为直径的圆必与准线相切.②(焦点弦长与中点关系)③.④若直线的倾斜角为,则.⑤,两点的横坐标之积,纵坐标之积均为定值,即,.⑥为定值.一、直线与圆锥曲线位置关系1、直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到.2、直线与圆锥曲线只有一个公共点则直线与双曲线的一条渐近线平行,或直线与抛物线的对称轴平行,或直线与圆锥曲线相切.【典例1】(2023·全国·高三专题练习)直线l:与椭圆C:的位置关系是()A.相交B.相切C.相离D.不能确定【答案】A【解析】将直线l:变形为l:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,由得,于是直线l过定点,而,于是点在椭圆C:内部,因此直线l:与椭圆C:相交.故选:A.【典例2】(2023·高三课时练习)直线与抛物线的位置关系为()A.相交B.相切C.相离D.不能确定【答案】A【解析】直线过定点, ,∴在抛物线内部,∴直线与抛物线相交,故选:A.【典例3】(2023·四川成都·高三模拟预测)已知命题p:,命题q:直线与抛物线有两个公共点,则p是q的()A.充分不必要条件B.必要不充分条件C.充要...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群