2024年新高考数学复习资料专题8.2 圆的方程(解析版).docx本文件免费下载 【共20页】

2024年新高考数学复习资料专题8.2 圆的方程(解析版).docx
2024年新高考数学复习资料专题8.2 圆的方程(解析版).docx
2024年新高考数学复习资料专题8.2 圆的方程(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题8.2圆的方程目录题型一:圆的方程........................................................................................................................3题型二:与圆有关的轨迹问题.....................................................................................................6题型三:与圆有关的最值问题.....................................................................................................8知识点一、圆的方程(1)圆的定义:平面上到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)圆的标准方程:我们把方程(x-a)2+(y-b)2=r2称为圆心为(a,b),半径为r的圆的标准方程.当a=b=0时,方程为x2+y2=r2,表示以原点O为圆心,r为半径的圆.(3)圆的一般方程:对于方程x2+y2+Dx+Ey+F=0,配方得到:2+2=.①当D2+E2-4F>0时,该方程表示以心,半的,方程叫做的一般方程;为圆为径圆该圆②当D2+E2-4F=0时,该方程表示点;③当D2+E2-4F<0时,该方程不表示任何图形.知识点二、点与圆的位置关系已知圆C:(x-a)2+(y-b)2=r2(r>0),点P(x0,y0),设d=|PC|=.知识点总结小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com位置关系d与r的大小关系图示点P的坐标满足条件点在圆外d>r(x0-a)2+(y0-b)2>r2点在圆上d=r(x0-a)2+(y0-b)2=r2点在圆内d<r(x0-a)2+(y0-b)2<r2【常用结论与知识拓展】1.常的方程的法见圆设标准方程的设法一般方程的设法圆心在原点x2+y2=r2x2+y2-r2=0过原点(x-a)2+(y-b)2=a2+b2x2+y2+Dx+Ey=0小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com圆心在x轴上(x-a)2+y2=r2x2+y2+Dx+F=0圆心在y轴上x2+(y-b)2=r2x2+y2+Ey+F=0与x轴相切(x-a)2+(y-b)2=b2x2+y2+Dx+Ey+D2=0与y轴相切(x-a)2+(y-b)2=a2x2+y2+Dx+Ey+E2=02.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆,则3.圆的“直径式”方程:以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.4.圆的参数方程:圆心为(a,b),半径为r的圆的参数方程为其中θ为参数.可用来设圆上的点的坐标.题型一:圆的方程【要点讲解】充分把握题目的特征,标准方程形式更具“几何特征”明确圆心和半径即可而一般方程形式则更具“代数方程特征”,得到关于待定系数的方程组即可,依据圆的“直径式”方程可以直接写出圆的方程.几何法确定圆心的位置的方法一般有:①圆心在过切点且与切线垂直的直线上;②圆心在圆的任意弦的垂直平分线上;③圆心在圆的任意两条不平行的弦的中垂线的交点上;④两圆相切时,切点与两圆圆心共线.确定圆的半径的主要方法是构造直角三角形(即以弦长的一半、弦心距、半径组成的三角形),并解此直角三角形;代数法即设出圆的方程(标准方程或一般方程),用“待定系数法”求解a,b,r或D,E,F.【例1】若圆的半径为2,则实数的值为A.B.C.9D.8例题精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解答】解:由,得,所以,解得.故选:.【变式训练1】已知圆的一条直径的端点分别为,,则此圆的标准方程是A.B.C.D.【解答】解:因为圆的一条直径的端点分别为,,所以圆的圆心,,则此圆的标准方程是.故选:.【变式训练2】若圆经过点,,且圆心在直线上,则圆的方程为A.B.C.D.【解答】解:圆经过点,,可得线段的中点为,又,所以线段的中垂线的方程为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即.由,解得,即,圆的半径,所以圆的方程为.故选:.【变式训练3】若方程表示圆,则的范围是A.B.,C.D.,【解答】解:根据题意,若方程表示圆,则有,即,解可得,即的取值范围为,故选:.【变式训练4】经过点,且以为圆心的圆的一般方程为A.B.C.D.【解答】解:由题意得,圆的半径,所以圆的标准方程为,所以圆的一...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022·微专题·小练习·数学·文科【统考版】专练20.docx
2022·微专题·小练习·数学·文科【统考版】专练20.docx
免费
24下载
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
免费
10下载
2025年新高考数学复习资料高考仿真重难点训练03  指对幂函数 函数的应用(原卷版).docx
2025年新高考数学复习资料高考仿真重难点训练03 指对幂函数 函数的应用(原卷版).docx
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01  数列中的数学文化与新定义(原卷版).docx
2024年新高考数学复习资料重难点突破01 数列中的数学文化与新定义(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
免费
0下载
2024年高考押题预测卷数学(考试版A4) (2).docx
2024年高考押题预测卷数学(考试版A4) (2).docx
免费
27下载
2015年高考数学试卷(文)(安徽)(空白卷).doc
2015年高考数学试卷(文)(安徽)(空白卷).doc
免费
0下载
2019年高考数学试卷(理)(北京)(解析卷).doc
2019年高考数学试卷(理)(北京)(解析卷).doc
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练21.docx
2023《微专题·小练习》·数学·文科·L-2专练21.docx
免费
29下载
2016年北京市高考数学试卷(理科).doc
2016年北京市高考数学试卷(理科).doc
免费
1下载
2010年高考数学试卷(理)(北京)(空白卷).doc
2010年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
免费
0下载
2024版《微专题》·数学·新高考专练 48.docx
2024版《微专题》·数学·新高考专练 48.docx
免费
28下载
1990年山西高考文科数学真题及答案.doc
1990年山西高考文科数学真题及答案.doc
免费
13下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
免费
0下载
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
免费
0下载
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料