小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com思想03运用函数与方程的思想方法解题【目】录...........................................................................................................................................1...........................................................................................................................................2...........................................................................................................................................2...........................................................................................................................................3考点一:运用函数的思想研究问题.......................................................................................................................3考点二:运用方程的思想研究问题.....................................................................................................................5考点三:运用函数与方程的思想研究不等式问题................................................................................................5考点四:运用函数与方程的思想研究其他问题....................................................................................................6高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有分类讨论思想、数形结合思想、函数与方程思想、转化与化归思想等.1、函数与方程是紧密相联、可以相互转化的.在研究方程解的存在性、方程解的个数、方程解的分布等问题时,一般利用方程的性质,对方程进行同解变形,进而构造函数,利用函数的图象与性质求解方小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com程问题.例如,方程解的个数可以转化为函数的图象与轴交点的个数,也可以参变分离,转化为水平直线与函数图象交点的个数,也可以部分分离,转化为斜线与函数图象交点的个数,也可以构造两个熟悉函数,转化为两个函数图象交点的个数.2、在研究函数问题时,运用方程的思想,设出未知数,通过题目中的等量关系,建立方程(组),进而求解方程(组),或者将方程变形,构造新函数,更易于研究其图象和性质.例如,在研究曲线的切线问题时,设出切点横坐标,得到切线斜率,切线方程为,从而将函数中的切线问题转化为关于切点横坐标的方程问题.3、函数、方程、不等式三位一体,常常相互转化.在研究不等式的解集、不等式恒成立、不等式有解、不等式的证明等问题时,最重要的思想方法就是函数与方程思想,构造适当的函数,分析、转化不等式问题.例如,不等式或恒成立,可以转化为或.也可以考虑参变分离再求函数的最值.4、函数与方程的思想贯穿高中数学的多个模块,在数列、解析几何、三角形、立体几何等内容中都有广泛的运用.函数思想体现的是运动与变化的观念,通过分析问题中的数量关系,建构函数,再运用函数的图象与性质分析.转化问题,进而解决问题.方程思想体现的是“动中求静”,寻求变化过程中保持不变的等量关系,建构方程(组),通过解方程或方程组,或者运用方程的性质去分析,转化问题,使问题获得解决.1.(2023·全国·统考高考真题)函数存在3个零点,则的取值范围是()A.B.C.D.2.(多选题)(2023·全国·统考高考真题)已知函数的定义域为,,则().A.B.C.是偶函数D.为的极小值点3.(多选题)(2023·全国·统考高考真题)若函...