2024年新高考数学复习资料专题02 等差数列(解析版).docx本文件免费下载 【共26页】

2024年新高考数学复习资料专题02 等差数列(解析版).docx
2024年新高考数学复习资料专题02 等差数列(解析版).docx
2024年新高考数学复习资料专题02 等差数列(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题02等差数列目录题型一:等差数列的基本运算...................................................3题型二:等差数列的证明与判断.................................................8题型三:等差数列的前n项和..................................................11题型四:“绝对值”求和......................................................13题型五:等差数列中的恒成立..................................................141.等差数列的概念(1)等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示,即an-an-1=d(n∈N+,且n≥2)或an+1-an=d(n∈N+).(2)等差中项:若三个数a,A,b成等差数列,则A叫做a与b的等差中项.根据等差数列的定义可以知道,2A=a+b.2.等差数列的通项公式与前n项和公式(1)通项公式:an=a1+(n-1)d.该式又可以写成an=nd+(a1-d),这表明d≠0时,an是关于n的一次函数,且d>0时是增函数,d<0时是减函数.(2)前n项和公式:Sn==na1+d.该式又可以写成Sn=n2+n,这表明d≠0时,Sn是关于n的二次函数,且d>0时图象开口向上,d<0时图象开口向下.3.等差数列的性质知识点总结小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)与项有关的性质①等差数列{an}中,若公差为d,则an=am+(n-m)d,当n≠m时,d=.②在等差数列{an}中,若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq.特别地,若m+n=2p,则am+an=2ap.③若数列{an}是公差为d的等差数列,则数列{λan+b}(λ,b为常数)是公差为λd的等差数列.④若数列{an},{bn}是公差分别为d1,d2的等差数列,则数列{λ1an+λ2bn}(λ1,λ2为常数)也是等差数列,且公差为λ1d1+λ2d2.⑤数列{an}是公差为d的等差数列,则从数列中抽出项ak,ak+m,ak+2m,…,组成的数列仍是等差数列,公差为md.(2)与和有关的性质①等差数列中依次k项之和Sk,S2k-Sk,S3k-S2k,…组成公差为k2d的等差数列.②记S偶为所有偶数项的和,S奇为所有奇数项的和.若等差数列的项数为2n(n∈N*),则S2n=n(an+an+1),S偶-S奇=nd,=(S奇≠0);若等差数列的项数为2n-1(n∈N*),则S2n-1=(2n-1)an(an是数列的中间项),S奇-S偶=an,=(S奇≠0).③{an}为等差数列⇒等差列为数.④两个等差数列{an},{bn}的前n项和Sn,Tn之间的关系为=(bn≠0,T2n-1≠0).常用结论与知识拓展(1)若an=pn+q(p,q常为数),则{an}一定是公差为p的等差列数.(2)等差列前数n和的最项值与{an}的性有单调关.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com①若a1>0,d<0,则Sn存在最大值.②若a1<0,d>0,则Sn存在最小值.③若a1>0,d>0,则{Sn}是增列,递数S1是{Sn}的最小;若值a1<0,d<0,则{Sn}是列递减数,S1是{Sn}的最大值.(3){an}是等差列数⇔Sn=An2+Bn(A,B是常数).若Sn=An2+Bn+C且C≠0,则{an}第从2起成等差列项数.题型一:等差数列的基本运算【要点讲解】在等差数列五个基本量a1,d,n,an,Sn中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意等差数列性质、整体代换及方程思想的应用.【例1】已知数列为等差数列,若,,则A.15B.16C.17D.18【解答】解:设等差数列的首项为,公差为,由,得,,又,,即,得..故选:.【变式训练1】已知数列是等差数列,且,则例题精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【解答】解:因为数列是等差数列,且,所以,所以.故选:.【变式训练2】在等差数列中,若,,则等于A.20B.25C.30D.33【解答】解:根据题意,设等差数列的公差为,若,,则有,解得,则,故选:.【变式训练3】在等差数列中,,,则A.B.C.D.0【解答】解:根据题意,等差数列中,有,又由,,则;故选:.【变式训练...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022·微专题·小练习·数学·文科【统考版】专练20.docx
2022·微专题·小练习·数学·文科【统考版】专练20.docx
免费
24下载
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
免费
10下载
2025年新高考数学复习资料高考仿真重难点训练03  指对幂函数 函数的应用(原卷版).docx
2025年新高考数学复习资料高考仿真重难点训练03 指对幂函数 函数的应用(原卷版).docx
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01  数列中的数学文化与新定义(原卷版).docx
2024年新高考数学复习资料重难点突破01 数列中的数学文化与新定义(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
免费
0下载
2024年高考押题预测卷数学(考试版A4) (2).docx
2024年高考押题预测卷数学(考试版A4) (2).docx
免费
27下载
2015年高考数学试卷(文)(安徽)(空白卷).doc
2015年高考数学试卷(文)(安徽)(空白卷).doc
免费
0下载
2019年高考数学试卷(理)(北京)(解析卷).doc
2019年高考数学试卷(理)(北京)(解析卷).doc
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练21.docx
2023《微专题·小练习》·数学·文科·L-2专练21.docx
免费
29下载
2016年北京市高考数学试卷(理科).doc
2016年北京市高考数学试卷(理科).doc
免费
1下载
2010年高考数学试卷(理)(北京)(空白卷).doc
2010年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
免费
0下载
2024版《微专题》·数学·新高考专练 48.docx
2024版《微专题》·数学·新高考专练 48.docx
免费
28下载
1990年山西高考文科数学真题及答案.doc
1990年山西高考文科数学真题及答案.doc
免费
13下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
免费
0下载
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
免费
0下载
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料