2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(解析版).docx本文件免费下载 【共60页】

2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(解析版).docx
2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(解析版).docx
2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题09数列的通项公式、数列求和及综合应用目录01等差、等比数列的基本量问题.................................................................................................102证明等差等比数列....................................................................................................................403等差等比数列的交汇问题.........................................................................................................704数列的通项公式......................................................................................................................1105数列求和.................................................................................................................................1706数列性质的综合问题..............................................................................................................3007实际应用中的数列问题...........................................................................................................3708以数列为载体的情境题...........................................................................................................4109数列的递推问题......................................................................................................................4401等差、等比数列的基本量问题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(2023·重庆·高三统考阶段练习)已知数列满足,,记,则有()A.B.C.D.【答案】D【解析】对于A项,由已知可得,故A项错误;对于B项,由已知可得,,,故B错误;对于C项,由已知可得,,,即,所以.故C项错误;对于D项,因为,,所以,是以3为首项,4为公差的等差数列,所以,.故D正确.故选:D.2.(2023·云南·怒江傈僳族自治州民族中学校联考一模)已知等比数列的前项和为,,,则()A.29B.31C.33D.36【答案】B【解析】因为数列是等比数列,,所以,即,则.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又因为,故有.所以,则,所有,所有,故B项正确.故选:B.3.(2023·安徽·高三校联考阶段练习)已知等差数列,其前项和为,若,且满足,,成等比数列,则等于()A.或B.C.D.2【答案】C【解析】由已知可得,设的公差为,且,即,故.故选:C4.(2023·辽宁·高三校联考阶段练习)在等比数列中,已知,,则()A.B.42C.D.【答案】C小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】设的公比为,则,解得,所以,解得,所以.故选:C.5.(2023·全国·模拟预测)已知数列为等差数列,其前项和为,且,,则()A.63B.72C.135D.144【答案】C【解析】设等差数列的公差为,则,则.由,得,解得.又因为,所以,所以.故选:C.6.(2023·安徽·高三校联考阶段练习)已知数列对任意满足,则()A.3032B.3035C.3038D.3041【答案】C【解析】因为,所以,两式相减得:,令得,所以,所以,当时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.故选:C.02证明等差等比数列7.(2023·黑龙江哈尔滨·高三哈师大附中校考期中)已知数列中,,(1)求证:数列是等差数列,并求出的通项公式;【解析】(1)当时,由可得,易知;两边同时取倒数可得,即,由等差数列定义可得是以为首项,公差的等差数列,所以,即,可得,显然时,符合上式,即的通项公式为;8.(2023·上海·高三上海市宜川中学校考期中)已知数列、的各项均为正数,且对任意,都有,,成等差数列,,,成等比数列,且,.(1)求证:数列是等差数列;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)求数列、的通项公式.【解析】(1)因为、、成等差数...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群