小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题07函数的性质及其应用1、(2023年新课标全国Ⅱ卷)若为偶函数,则().A.B.0C.D.1【答案】B【详解】因为为偶函数,则,解得,当时,,,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.2、(2023年新课标全国Ⅰ卷)设函数在区间上单调递减,则的取值范围是()A.B.C.D.【答案】D【详解】函数在R上单调递增,而函数在区间上单调递减,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D3、(2023年全国乙卷数学(文)(理))已知是偶函数,则()A.B.C.1D.2【答案】D【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.4、(2023年新高考天津卷)函数的图象如下图所示,则的解析式可能为()A.B.C.D.【答案】D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D5、【2022年全国甲卷】函数y=(3x−3−x)cosx在区间[−π2,π2]的图象大致为()A.B.C.D.【答案】A【解析】令f(x)=(3x−3−x)cosx,x∈[−π2,π2],则f(−x)=(3−x−3x)cos(−x)=−(3x−3−x)cosx=−f(x),所以f(x)为奇函数,排除BD;又当x∈(0,π2)时,3x−3−x>0,cosx>0,所以f(x)>0,排除C.故选:A.6、【2022年全国乙卷】已知函数f(x),g(x)的定义域均为R,且小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comf(x)+g(2−x)=5,g(x)−f(x−4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则∑❑❑❑k=122f(k)=¿()A.−21B.−22C.−23D.−24【答案】D【解析】因为y=g(x)的图像关于直线x=2对称,所以g(2−x)=g(x+2),因为g(x)−f(x−4)=7,所以g(x+2)−f(x−2)=7,即g(x+2)=7+f(x−2),因为f(x)+g(2−x)=5,所以f(x)+g(x+2)=5,代入得f(x)+[7+f(x−2)]=5,即f(x)+f(x−2)=−2,所以f(3)+f(5)+…+f(21)=(−2)×5=−10,f(4)+f(6)+…+f(22)=(−2)×5=−10.因为f(x)+g(2−x)=5,所以f(0)+g(2)=5,即f(0)=1,所以f(2)=−2−f(0)=−3.因为g(x)−f(x−4)=7,所以g(x+4)−f(x)=7,又因为f(x)+g(2−x)=5,联立得,g(2−x)+g(x+4)=12,所以y=g(x)的图像关于点(3,6)中心对称,因为函数g(x)的定义域为R,所以g(3)=6因为f(x)+g(x+2)=5,所以f(1)=5−g(3)=−1.所以∑❑❑❑k=122f(k)=f(1)+f(2)+[f(3)+f(5)+…+f(21)]+[f(4)+f(6)+…+f(22)]=−1−3−10−10=−24.故选:D7、【2022年新高考2卷】已知函数f(x)的定义域为R,且f(x+y)+f(x−y)=f(x)f(y),f(1)=1,则∑k=122❑f(k)=¿()A.−3B.−2C.0D.1【答案】A【解析】因为f(x+y)+f(x−y)=f(x)f(y),令x=1,y=0可得,2f(1)=f(1)f(0),所以f(0)=2,令小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comx=0可得,f(y)+f(−y)=2f(y),即f(y)=f(−y),所以函数f(x)为偶函数,令y=1得,f(x+1)+f(x−1)=f(x)f(1)=f(x),即有f(x+2)+f(x)=f(x+1),从而可知f(x+2)=−f(x−1),f(x−1)=−f(x−4),故f(x+2)=f(x−4),即f(x)=f(x+6),所以函数f(x)的一个周期为6.因为f(2)=f(1)−f(0)=1−2=−1,f(3)=f(2)−f(1)=−1−1=−2,f(4)=f(−2)=f(2)=−1,f(5)=f(−1)=f(1)=1,f(6)=f(0)=2,所以一个周期内的f(1)+f(2)+⋯+f(6)=0.由于22除以6余4,所以∑k=122f(k)=f(1)+f(2)+f(3)+f(4)=1−1−2−1=−3.故选:A.8、(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))设函数,则f(x)()A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减【答案】D【解析】由得定义域为,关于坐标原点对称,又,为定义域上的奇函数,可排除AC;当时,,在上单调递增,在上单调递减,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在上单调递增,排除B;当时,,在上单调递...