2024年新高考数学复习资料专题15 直线与圆(解析版).docx本文件免费下载 【共29页】

2024年新高考数学复习资料专题15 直线与圆(解析版).docx
2024年新高考数学复习资料专题15 直线与圆(解析版).docx
2024年新高考数学复习资料专题15 直线与圆(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题15直线与圆1、(2023年新课标全国Ⅰ卷)过点与圆相切的两条直线的夹角为,则()A.1B.C.D.【答案】B【详解】方法一:因为,即,可得圆心,半径,过点作圆C的切线,切点为,因为,则,可得,则,,即为钝角,所以;法二:圆的圆心,半径,过点作圆C的切线,切点为,连接,可得,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为且,则,即,解得,即为钝角,则,且为锐角,所以;2、(2023年全国乙卷数学(文))已知实数满足,则的最大值是()A.B.4C.D.7【答案】C【详解】法一:令,则,代入原式化简得,因为存在实数,则,即,化简得,解得,故的最大值是,法二:,整理得,令,,其中,则,,所以,则,即时,取得最大值,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com法三:由可得,设,则圆心到直线的距离,解得故选:C.3、(2023年新课标全国Ⅱ卷)已知直线与交于A,B两点,写出满足“面积为”的m的一个值______.【答案】(中任意一个皆可以)【详解】设点到直线的距离为,由弦长公式得,所以,解得:或,由,所以或,解得:或.故答案为:(中任意一个皆可以).4、(2021年全国新高考Ⅰ卷数学试题)(多选题)已知点在圆上,点、,则()A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,【答案】ACD小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】圆的圆心为,半径为,直线的方程为,即,圆心到直线的距离为,所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;如下图所示:当最大或最小时,与圆相切,连接、,可知,,,由勾股定理可得,CD选项正确.故选:ACD.5、(2020全国Ⅲ文8)点(0,﹣1)到直线距离的最大值为()A.1B.C.D.2【答案】B【解析】由可知直线过定点,设,当直线与垂直时,点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com到直线距离最大,即为.6、(2020·新课标Ⅰ文)已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4【答案】B【解析】圆化为,所以圆心坐标为,半径为ABCD,设DP=BQ=λ(0<λ<2),当过点λ=1的直线和直线GH//EF;垂直时,圆心到过点EB=2的直线的距离最大,所求的弦长最短,根据弦长公式最小值为GEFH.7、(2020·新课标Ⅱ文理5)若过点的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【答案】B【解析】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,∴圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,∴圆心的坐标为或,圆心到直线的距离均为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴圆心到直线的距离为.故选B.8、(2020全国Ⅰ理11】已知⊙,直线,为上的动点,过点作⊙的切线,切点为,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】圆的方程可化为,点到直线的距离为,∴直线与圆相离.依圆的知识可知,四点四点共圆,且,∴,而,当直线时,,,此时最小.∴即,由解得,.∴以为直径的圆的方程为,即,两圆的方程相减可得:,即为直线的方程,故选D.9、【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】: 点M在直线2x+y−1=0上,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴❑√(a−3)2+(1−2a)2=❑√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=❑√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=510、【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
免费
0下载
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
免费
5下载
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2024版《微专题》·数学·新高考专练 7.docx
2024版《微专题》·数学·新高考专练 7.docx
免费
17下载
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
11下载
2003年河南高考理科数学真题及答案.doc
2003年河南高考理科数学真题及答案.doc
免费
17下载
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
免费
0下载
2017年上海市松江区高考数学二模试卷.doc
2017年上海市松江区高考数学二模试卷.doc
免费
0下载
2022·微专题·小练习·数学【新高考】专练45.docx
2022·微专题·小练习·数学【新高考】专练45.docx
免费
20下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
免费
0下载
2012年高考数学试卷(理)(陕西)(解析卷).pdf
2012年高考数学试卷(理)(陕西)(解析卷).pdf
免费
0下载
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
免费
0下载
1994年广东高考理科数学真题及答案.doc
1994年广东高考理科数学真题及答案.doc
免费
20下载
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
免费
0下载
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
免费
11下载
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群