2024年新高考数学复习资料专题19 等差数列与等比数列基本量的问题(解析版).docx本文件免费下载 【共19页】

2024年新高考数学复习资料专题19 等差数列与等比数列基本量的问题(解析版).docx
2024年新高考数学复习资料专题19 等差数列与等比数列基本量的问题(解析版).docx
2024年新高考数学复习资料专题19 等差数列与等比数列基本量的问题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题19等差数列与等比数列基本量的问题1、(2023年全国乙卷数学(文))已知为等比数列,,,则______.【答案】【详解】设的公比为,则,显然,则,即,则,因为,则,则,则,则,故答案为:.2、(2023年全国甲卷数学(文))记为等差数列的前项和.若,则()A.25B.22C.20D.15【答案】C【详解】方法一:设等差数列的公差为,首项为,依题意可得,,即,又,解得:,所以.故选:C.方法二:,,所以,,从而,于是,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.故选:C.3、(2023年全国甲卷数学(文))记为等比数列的前项和.若,则的公比为________.【答案】【详解】若,则由得,则,不合题意.所以.当时,因为,所以,即,即,即,解得.故答案为:4、(2023年全国甲卷数学(理))已知正项等比数列中,为前n项和,,则()A.7B.9C.15D.30【答案】C【分析】根据题意列出关于的方程,计算出,即可求出.【详解】由题知,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,即,即.由题知,所以.所以.故选:C.5、(2023年新高考天津卷)已知为等比数列,为数列的前项和,,则的值为()A.3B.18C.54D.152【答案】C【详解】由题意可得:当时,,即,①当时,,即,②联立①②可得,则.故选:C6、【2022年全国乙卷】已知等比数列{an}的前3项和为168,a2−a5=42,则a6=¿()A.14B.12C.6D.3【答案】D【解析】设等比数列{an}的公比为q,q≠0,若q=1,则a2−a5=0,与题意矛盾,所以q≠1,则¿,解得¿,所以a6=a1q5=3.故选:D.7、(2023年新课标全国Ⅰ卷)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【详解】方法1,甲:为等差数列,设其首项为,公差为,则,因此为等差数列,则甲是乙的充分条件;反之,乙:为等差数列,即为常数,设为,即,则,有,两式相减得:,即,对也成立,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C正确.方法2,甲:为等差数列,设数列的首项,公差为,即,则,因此为等差数列,即甲是乙的充分条件;反之,乙:为等差数列,即,即,,当时,上两式相减得:,当时,上式成立,于是,又为常数,因此为等差数列,则甲是乙的必要条件,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以甲是乙的充要条件.故选:C8、(2023年新课标全国Ⅰ卷)设等差数列的公差为,且.令,记分别为数列的前项和.(1)若,求的通项公式;(2)若为等差数列,且,求.【答案】(1)(2)【详解】(1),,解得,,又,,即,解得或(舍去),.(2)为等差数列,,即,,即,解得或,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又,由等差数列性质知,,即,,即,解得或(舍去)当时,,解得,与矛盾,无解;当时,,解得.综上,.9、(2023年新课标全国Ⅱ卷)记为等比数列的前n项和,若,,则().A.120B.85C.D.【答案】C【详解】方法一:设等比数列的公比为,首项为,若,则,与题意不符,所以;由,可得,,①,由①可得,,解得:,所以.故选:C.方法二:设等比数列的公比为,因为,,所以,否则,从而,成等比数列,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以有,,解得:或,当时,,即为,易知,,即;当时,,与矛盾,舍去.故选:C.10、(2023年全国乙卷数学(文))记为等差数列的前项和,已知.(1)求的通项公式;(2)求数列的前项和.【答案】(1)(2)【详解】(1)设等差数列的公差为,由题意可得,即,解得,所以,(2)因为,令,解得,且,当时,则,可得;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,则,可得;综上所述...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群